File size: 7,751 Bytes
7a69f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
'''
 * Copyright (c) 2022, salesforce.com, inc.
 * All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
 * By Junnan Li
'''
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist

from models.blip_vqa import blip_vqa
import utils
from utils import cosine_lr_schedule
from data import create_dataset, create_sampler, create_loader
from data.vqa_dataset import vqa_collate_fn
from data.utils import save_result


def train(model, data_loader, optimizer, epoch, device):
    # train
    model.train()  
    
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))

    header = 'Train Epoch: [{}]'.format(epoch)
    print_freq = 50    
    
    for i,(image, question, answer, weights, n) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
        image, weights = image.to(device,non_blocking=True), weights.to(device,non_blocking=True)      

        loss = model(image, question, answer, train=True, n=n, weights=weights)        
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()    
        
        metric_logger.update(loss=loss.item())
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger.global_avg())     
    return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()} 


@torch.no_grad()
def evaluation(model, data_loader, device, config) :
    # test
    model.eval()
            
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Generate VQA test result:'
    print_freq = 50
    
    result = []
    
    if config['inference']=='rank':   
        answer_list = data_loader.dataset.answer_list
        answer_candidates = model.tokenizer(answer_list, padding='longest', return_tensors='pt').to(device)    
        answer_candidates.input_ids[:,0] = model.tokenizer.bos_token_id
        
    for n, (image, question, question_id) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):        
        image = image.to(device,non_blocking=True)             

        if config['inference']=='generate':
            answers = model(image, question, train=False, inference='generate') 
            
            for answer, ques_id in zip(answers, question_id):
                ques_id = int(ques_id.item())       
                result.append({"question_id":ques_id, "answer":answer})             
            
        elif config['inference']=='rank':    
            answer_ids = model(image, question, answer_candidates, train=False, inference='rank', k_test=config['k_test'])      

            for ques_id, answer_id in zip(question_id, answer_ids):
                result.append({"question_id":int(ques_id.item()), "answer":answer_list[answer_id]})   

    return result


def main(args, config):
    utils.init_distributed_mode(args)    
    
    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    cudnn.benchmark = True
    
    #### Dataset #### 
    print("Creating vqa datasets")
    datasets = create_dataset('vqa', config)   
    
    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()            
        samplers = create_sampler(datasets, [True, False], num_tasks, global_rank)         
    else:
        samplers = [None, None]
    
    train_loader, test_loader = create_loader(datasets,samplers,
                                              batch_size=[config['batch_size_train'],config['batch_size_test']],
                                              num_workers=[4,4],is_trains=[True, False], 
                                              collate_fns=[vqa_collate_fn,None]) 
    #### Model #### 
    print("Creating model")
    model = blip_vqa(pretrained=config['pretrained'], image_size=config['image_size'], 
                       vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'])

    model = model.to(device)   
    
    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module    
    
    optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])

    best = 0
    best_epoch = 0 
       
    print("Start training")
    start_time = time.time()    
    for epoch in range(0, config['max_epoch']):
        if not args.evaluate:        
            if args.distributed:
                train_loader.sampler.set_epoch(epoch)
                
            cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
                
            train_stats = train(model, train_loader, optimizer, epoch, device) 

        else:         
            break        
        
        if utils.is_main_process():     
            log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                         'epoch': epoch,
                        }                
            with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
                f.write(json.dumps(log_stats) + "\n")                        
                    
            save_obj = {
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'config': config,
                'epoch': epoch,
            }
            torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))  

        dist.barrier()         

    vqa_result = evaluation(model_without_ddp, test_loader, device, config)        
    result_file = save_result(vqa_result, args.result_dir, 'vqa_result')  
                      
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str)) 
    
            

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', default='./configs/vqa.yaml') 
    parser.add_argument('--output_dir', default='output/VQA')
    parser.add_argument('--evaluate', action='store_true')      
    parser.add_argument('--device', default='cuda')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')    
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    parser.add_argument('--distributed', default=True, type=bool)
    args = parser.parse_args()

    config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)

    args.result_dir = os.path.join(args.output_dir, 'result')

    Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    Path(args.result_dir).mkdir(parents=True, exist_ok=True)
        
    yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))    
    
    main(args, config)