File size: 4,711 Bytes
5d3ac8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import json

from torch.utils.data import Dataset
from torchvision.datasets.utils import download_url

from PIL import Image

from data.utils import pre_caption

class coco_karpathy_train(Dataset):
    def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''):        
        '''
        image_root (string): Root directory of images (e.g. coco/images/)
        ann_root (string): directory to store the annotation file
        '''        
        url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json'
        filename = 'coco_karpathy_train.json'

        download_url(url,ann_root)
        
        self.annotation = json.load(open(os.path.join(ann_root,filename),'r'))
        self.transform = transform
        self.image_root = image_root
        self.max_words = max_words      
        self.prompt = prompt
        
        self.img_ids = {}  
        n = 0
        for ann in self.annotation:
            img_id = ann['image_id']
            if img_id not in self.img_ids.keys():
                self.img_ids[img_id] = n
                n += 1    
        
    def __len__(self):
        return len(self.annotation)
    
    def __getitem__(self, index):    
        
        ann = self.annotation[index]
        
        image_path = os.path.join(self.image_root,ann['image'])        
        image = Image.open(image_path).convert('RGB')   
        image = self.transform(image)
        
        caption = self.prompt+pre_caption(ann['caption'], self.max_words) 

        return image, caption, self.img_ids[ann['image_id']] 
    
    
class coco_karpathy_caption_eval(Dataset):
    def __init__(self, transform, image_root, ann_root, split):  
        '''
        image_root (string): Root directory of images (e.g. coco/images/)
        ann_root (string): directory to store the annotation file
        split (string): val or test
        '''
        urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
                'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
        filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
        
        download_url(urls[split],ann_root)
        
        self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
        self.transform = transform
        self.image_root = image_root
        
    def __len__(self):
        return len(self.annotation)
    
    def __getitem__(self, index):    
        
        ann = self.annotation[index]
        
        image_path = os.path.join(self.image_root,ann['image'])        
        image = Image.open(image_path).convert('RGB')   
        image = self.transform(image)          
        
        img_id = ann['image'].split('/')[-1].strip('.jpg').split('_')[-1]
        
        return image, int(img_id)   
    
    
class coco_karpathy_retrieval_eval(Dataset):
    def __init__(self, transform, image_root, ann_root, split, max_words=30):  
        '''
        image_root (string): Root directory of images (e.g. coco/images/)
        ann_root (string): directory to store the annotation file
        split (string): val or test
        '''
        urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
                'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
        filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
        
        download_url(urls[split],ann_root)
        
        self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
        self.transform = transform
        self.image_root = image_root
        
        self.text = []
        self.image = []
        self.txt2img = {}
        self.img2txt = {}
        
        txt_id = 0
        for img_id, ann in enumerate(self.annotation):
            self.image.append(ann['image'])
            self.img2txt[img_id] = []
            for i, caption in enumerate(ann['caption']):
                self.text.append(pre_caption(caption,max_words))
                self.img2txt[img_id].append(txt_id)
                self.txt2img[txt_id] = img_id
                txt_id += 1
                                    
    def __len__(self):
        return len(self.annotation)
    
    def __getitem__(self, index):    
        
        image_path = os.path.join(self.image_root, self.annotation[index]['image'])        
        image = Image.open(image_path).convert('RGB')    
        image = self.transform(image)  

        return image, index