Spaces:
Running
Running
Upload data/nlvr_dataset.py
Browse files- data/nlvr_dataset.py +78 -0
data/nlvr_dataset.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from torchvision.datasets.utils import download_url
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from data.utils import pre_caption
|
11 |
+
|
12 |
+
class nlvr_dataset(Dataset):
|
13 |
+
def __init__(self, transform, image_root, ann_root, split):
|
14 |
+
'''
|
15 |
+
image_root (string): Root directory of images
|
16 |
+
ann_root (string): directory to store the annotation file
|
17 |
+
split (string): train, val or test
|
18 |
+
'''
|
19 |
+
urls = {'train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_train.json',
|
20 |
+
'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_dev.json',
|
21 |
+
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_test.json'}
|
22 |
+
filenames = {'train':'nlvr_train.json','val':'nlvr_dev.json','test':'nlvr_test.json'}
|
23 |
+
|
24 |
+
download_url(urls[split],ann_root)
|
25 |
+
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
26 |
+
|
27 |
+
self.transform = transform
|
28 |
+
self.image_root = image_root
|
29 |
+
|
30 |
+
|
31 |
+
def __len__(self):
|
32 |
+
return len(self.annotation)
|
33 |
+
|
34 |
+
|
35 |
+
def __getitem__(self, index):
|
36 |
+
|
37 |
+
ann = self.annotation[index]
|
38 |
+
|
39 |
+
image0_path = os.path.join(self.image_root,ann['images'][0])
|
40 |
+
image0 = Image.open(image0_path).convert('RGB')
|
41 |
+
image0 = self.transform(image0)
|
42 |
+
|
43 |
+
image1_path = os.path.join(self.image_root,ann['images'][1])
|
44 |
+
image1 = Image.open(image1_path).convert('RGB')
|
45 |
+
image1 = self.transform(image1)
|
46 |
+
|
47 |
+
sentence = pre_caption(ann['sentence'], 40)
|
48 |
+
|
49 |
+
if ann['label']=='True':
|
50 |
+
label = 1
|
51 |
+
else:
|
52 |
+
label = 0
|
53 |
+
|
54 |
+
words = sentence.split(' ')
|
55 |
+
|
56 |
+
if 'left' not in words and 'right' not in words:
|
57 |
+
if random.random()<0.5:
|
58 |
+
return image0, image1, sentence, label
|
59 |
+
else:
|
60 |
+
return image1, image0, sentence, label
|
61 |
+
else:
|
62 |
+
if random.random()<0.5:
|
63 |
+
return image0, image1, sentence, label
|
64 |
+
else:
|
65 |
+
new_words = []
|
66 |
+
for word in words:
|
67 |
+
if word=='left':
|
68 |
+
new_words.append('right')
|
69 |
+
elif word=='right':
|
70 |
+
new_words.append('left')
|
71 |
+
else:
|
72 |
+
new_words.append(word)
|
73 |
+
|
74 |
+
sentence = ' '.join(new_words)
|
75 |
+
return image1, image0, sentence, label
|
76 |
+
|
77 |
+
|
78 |
+
|