import os import json import random from torch.utils.data import Dataset from torchvision.datasets.utils import download_url from PIL import Image from data.utils import pre_caption class nlvr_dataset(Dataset): def __init__(self, transform, image_root, ann_root, split): ''' image_root (string): Root directory of images ann_root (string): directory to store the annotation file split (string): train, val or test ''' urls = {'train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_train.json', 'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_dev.json', 'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_test.json'} filenames = {'train':'nlvr_train.json','val':'nlvr_dev.json','test':'nlvr_test.json'} download_url(urls[split],ann_root) self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r')) self.transform = transform self.image_root = image_root def __len__(self): return len(self.annotation) def __getitem__(self, index): ann = self.annotation[index] image0_path = os.path.join(self.image_root,ann['images'][0]) image0 = Image.open(image0_path).convert('RGB') image0 = self.transform(image0) image1_path = os.path.join(self.image_root,ann['images'][1]) image1 = Image.open(image1_path).convert('RGB') image1 = self.transform(image1) sentence = pre_caption(ann['sentence'], 40) if ann['label']=='True': label = 1 else: label = 0 words = sentence.split(' ') if 'left' not in words and 'right' not in words: if random.random()<0.5: return image0, image1, sentence, label else: return image1, image0, sentence, label else: if random.random()<0.5: return image0, image1, sentence, label else: new_words = [] for word in words: if word=='left': new_words.append('right') elif word=='right': new_words.append('left') else: new_words.append(word) sentence = ' '.join(new_words) return image1, image0, sentence, label