import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.utils.spectral_norm as spectral_norm from torch.autograd import Function from utils import util, cielab import cv2, math, random def tensor2array(tensors): arrays = tensors.detach().to("cpu").numpy() return np.transpose(arrays, (0, 2, 3, 1)) def rgb2gray(color_batch): #! gray = 0.299*R+0.587*G+0.114*B gray_batch = color_batch[:, 0, ...] * 0.299 + color_batch[:, 1, ...] * 0.587 + color_batch[:, 2, ...] * 0.114 gray_batch = gray_batch.unsqueeze_(1) return gray_batch def getParamsAmount(model): params = list(model.parameters()) count = 0 for var in params: l = 1 for j in var.size(): l *= j count += l return count def checkAverageGradient(model): meanGrad, cnt = 0.0, 0 for name, parms in model.named_parameters(): if parms.requires_grad: meanGrad += torch.mean(torch.abs(parms.grad)) cnt += 1 return meanGrad.item() / cnt def get_random_mask(N, H, W, minNum, maxNum): binary_maps = np.zeros((N, H*W), np.float32) for i in range(N): locs = random.sample(range(0, H*W), random.randint(minNum,maxNum)) binary_maps[i, locs] = 1 return binary_maps.reshape(N,1,H,W) def io_user_control(hint_mask, spix_colors, output=True): cache_dir = '/apdcephfs/private_richardxia' if output: print('--- data saving') mask_imgs = tensor2array(hint_mask) * 2.0 - 1.0 util.save_images_from_batch(mask_imgs, cache_dir, ['mask.png'], -1) fake_gray = torch.zeros_like(spix_colors[:,[0],:,:]) spix_labs = torch.cat((fake_gray,spix_colors), dim=1) spix_imgs = tensor2array(spix_labs) util.save_normLabs_from_batch(spix_imgs, cache_dir, ['color.png'], -1) return hint_mask, spix_colors else: print('--- data loading') mask_img = cv2.imread(cache_dir+'/mask.png', cv2.IMREAD_GRAYSCALE) mask_img = np.expand_dims(mask_img, axis=2) / 255. hint_mask = torch.from_numpy(mask_img.transpose((2, 0, 1))) hint_mask = hint_mask.unsqueeze(0).cuda() bgr_img = cv2.imread(cache_dir+'/color.png', cv2.IMREAD_COLOR) rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) rgb_img = np.array(rgb_img / 255., np.float32) lab_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2LAB) lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1))) ab_chans = lab_img[1:3,:,:] / 110. spix_colors = ab_chans.unsqueeze(0).cuda() return hint_mask.float(), spix_colors.float() class Quantize(Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) y = x.round() return y @staticmethod def backward(ctx, grad_output): """ In the backward pass we receive a Tensor containing the gradient of the loss with respect to the output, and we need to compute the gradient of the loss with respect to the input. """ inputX = ctx.saved_tensors return grad_output def mark_color_hints(input_grays, target_ABs, gate_maps, kernel_size=3, base_ABs=None): ## to highlight the seeds with 1-pixel margin binary_map = torch.where(gate_maps>0.7, torch.ones_like(gate_maps), torch.zeros_like(gate_maps)) center_mask = dilate_seeds(binary_map, kernel_size=kernel_size) margin_mask = dilate_seeds(binary_map, kernel_size=kernel_size+2) - center_mask ## drop colors dilated_seeds = dilate_seeds(gate_maps, kernel_size=kernel_size+2) marked_grays = torch.where(margin_mask > 1e-5, torch.ones_like(gate_maps), input_grays) if base_ABs is None: marked_ABs = torch.where(center_mask < 1e-5, torch.zeros_like(target_ABs), target_ABs) else: marked_ABs = torch.where(margin_mask > 1e-5, torch.zeros_like(base_ABs), base_ABs) marked_ABs = torch.where(center_mask > 1e-5, target_ABs, marked_ABs) return torch.cat((marked_grays,marked_ABs), dim=1) def dilate_seeds(gate_maps, kernel_size=3): N,C,H,W = gate_maps.shape input_unf = F.unfold(gate_maps, kernel_size, padding=kernel_size//2) #! Notice: differentiable? just like max pooling? dilated_seeds, _ = torch.max(input_unf, dim=1, keepdim=True) output = F.fold(dilated_seeds, output_size=(H,W), kernel_size=1) #print('-------', input_unf.shape) return output class RebalanceLoss(Function): @staticmethod def forward(ctx, data_input, weights): ctx.save_for_backward(weights) return data_input.clone() @staticmethod def backward(ctx, grad_output): weights, = ctx.saved_tensors # reweigh gradient pixelwise so that rare colors get a chance to # contribute grad_input = grad_output * weights # second return value is None since we are not interested in the # gradient with respect to the weights return grad_input, None class GetClassWeights: def __init__(self, cielab, lambda_=0.5, device='cuda'): prior = torch.from_numpy(cielab.gamut.prior).cuda() uniform = torch.zeros_like(prior) uniform[prior > 0] = 1 / (prior > 0).sum().type_as(uniform) self.weights = 1 / ((1 - lambda_) * prior + lambda_ * uniform) self.weights /= torch.sum(prior * self.weights) def __call__(self, ab_actual): return self.weights[ab_actual.argmax(dim=1, keepdim=True)] class ColorLabel: def __init__(self, lambda_=0.5, device='cuda'): self.cielab = cielab.CIELAB() self.q_to_ab = torch.from_numpy(self.cielab.q_to_ab).to(device) prior = torch.from_numpy(self.cielab.gamut.prior).to(device) uniform = torch.zeros_like(prior) uniform[prior>0] = 1 / (prior>0).sum().type_as(uniform) self.weights = 1 / ((1-lambda_) * prior + lambda_ * uniform) self.weights /= torch.sum(prior * self.weights) def visualize_label(self, step=3): height, width = 200, 313*step label_lab = np.ones((height,width,3), np.float32) for x in range(313): ab = self.cielab.q_to_ab[x,:] label_lab[:,step*x:step*(x+1),1:] = ab / 110. label_lab[:,:,0] = np.zeros((height,width), np.float32) return label_lab @staticmethod def _gauss_eval(x, mu, sigma): norm = 1 / (2 * math.pi * sigma) return norm * torch.exp(-torch.sum((x - mu)**2, dim=0) / (2 * sigma**2)) def get_classweights(self, batch_gt_indx): #return self.weights[batch_gt_q.argmax(dim=1, keepdim=True)] return self.weights[batch_gt_indx] def encode_ab2ind(self, batch_ab, neighbours=5, sigma=5.0): batch_ab = batch_ab * 110. n, _, h, w = batch_ab.shape m = n * h * w # find nearest neighbours ab_ = batch_ab.permute(1, 0, 2, 3).reshape(2, -1) # (2, n*h*w) cdist = torch.cdist(self.q_to_ab, ab_.t()) nns = cdist.argsort(dim=0)[:neighbours, :] # gaussian weighting nn_gauss = batch_ab.new_zeros(neighbours, m) for i in range(neighbours): nn_gauss[i, :] = self._gauss_eval(self.q_to_ab[nns[i, :], :].t(), ab_, sigma) nn_gauss /= nn_gauss.sum(dim=0, keepdim=True) # expand bins = self.cielab.gamut.EXPECTED_SIZE q = batch_ab.new_zeros(bins, m) q[nns, torch.arange(m).repeat(neighbours, 1)] = nn_gauss return q.reshape(bins, n, h, w).permute(1, 0, 2, 3) def decode_ind2ab(self, batch_q, T=0.38): _, _, h, w = batch_q.shape batch_q = F.softmax(batch_q, dim=1) if T%1 == 0: # take the T-st probable index sorted_probs, batch_indexs = torch.sort(batch_q, dim=1, descending=True) #print('checking [index]', batch_indexs[:,0:5,5,5]) #print('checking [probs]', sorted_probs[:,0:5,5,5]) batch_indexs = batch_indexs[:,T:T+1,:,:] #batch_indexs = torch.where(sorted_probs[:,T:T+1,:,:] > 0.25, batch_indexs[:,T:T+1,:,:], batch_indexs[:,0:1,:,:]) ab = torch.stack([ self.q_to_ab.index_select(0, q_i.flatten()).reshape(h,w,2).permute(2,0,1) for q_i in batch_indexs]) else: batch_q = torch.exp(batch_q / T) batch_q /= batch_q.sum(dim=1, keepdim=True) a = torch.tensordot(batch_q, self.q_to_ab[:,0], dims=((1,), (0,))) a = a.unsqueeze(dim=1) b = torch.tensordot(batch_q, self.q_to_ab[:,1], dims=((1,), (0,))) b = b.unsqueeze(dim=1) ab = torch.cat((a, b), dim=1) ab = ab / 110. return ab.type(batch_q.dtype) def init_spixel_grid(img_height, img_width, spixel_size=16): # get spixel id for the final assignment n_spixl_h = int(np.floor(img_height/spixel_size)) n_spixl_w = int(np.floor(img_width/spixel_size)) spixel_height = int(img_height / (1. * n_spixl_h)) spixel_width = int(img_width / (1. * n_spixl_w)) spix_values = np.int32(np.arange(0, n_spixl_w * n_spixl_h).reshape((n_spixl_h, n_spixl_w))) def shift9pos(input, h_shift_unit=1, w_shift_unit=1): # input should be padding as (c, 1+ height+1, 1+width+1) input_pd = np.pad(input, ((h_shift_unit, h_shift_unit), (w_shift_unit, w_shift_unit)), mode='edge') input_pd = np.expand_dims(input_pd, axis=0) # assign to ... top = input_pd[:, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit] bottom = input_pd[:, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit] left = input_pd[:, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit] right = input_pd[:, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:] center = input_pd[:,h_shift_unit:-h_shift_unit,w_shift_unit:-w_shift_unit] bottom_right = input_pd[:, 2 * h_shift_unit:, 2 * w_shift_unit:] bottom_left = input_pd[:, 2 * h_shift_unit:, :-2 * w_shift_unit] top_right = input_pd[:, :-2 * h_shift_unit, 2 * w_shift_unit:] top_left = input_pd[:, :-2 * h_shift_unit, :-2 * w_shift_unit] shift_tensor = np.concatenate([ top_left, top, top_right, left, center, right, bottom_left, bottom, bottom_right], axis=0) return shift_tensor spix_idx_tensor_ = shift9pos(spix_values) spix_idx_tensor = np.repeat( np.repeat(spix_idx_tensor_, spixel_height, axis=1), spixel_width, axis=2) spixel_id_tensor = torch.from_numpy(spix_idx_tensor).type(torch.float) #! pixel coord feature maps all_h_coords = np.arange(0, img_height, 1) all_w_coords = np.arange(0, img_width, 1) curr_pxl_coord = np.array(np.meshgrid(all_h_coords, all_w_coords, indexing='ij')) coord_feat_tensor = np.concatenate([curr_pxl_coord[1:2, :, :], curr_pxl_coord[:1, :, :]]) coord_feat_tensor = torch.from_numpy(coord_feat_tensor).type(torch.float) return spixel_id_tensor, coord_feat_tensor def split_spixels(assign_map, spixel_ids): N,C,H,W = assign_map.shape spixel_id_map = spixel_ids.expand(N,-1,-1,-1) assig_max,_ = torch.max(assign_map, dim=1, keepdim=True) assignment_ = torch.where(assign_map == assig_max, torch.ones(assign_map.shape).cuda(),torch.zeros(assign_map.shape).cuda()) ## winner take all new_spixl_map_ = spixel_id_map * assignment_ new_spixl_map = torch.sum(new_spixl_map_,dim=1,keepdim=True).type(torch.int) return new_spixl_map def poolfeat(input, prob, sp_h=2, sp_w=2, need_entry_prob=False): def feat_prob_sum(feat_sum, prob_sum, shift_feat): feat_sum += shift_feat[:, :-1, :, :] prob_sum += shift_feat[:, -1:, :, :] return feat_sum, prob_sum b, _, h, w = input.shape h_shift_unit = 1 w_shift_unit = 1 p2d = (w_shift_unit, w_shift_unit, h_shift_unit, h_shift_unit) feat_ = torch.cat([input, torch.ones([b, 1, h, w], device=input.device)], dim=1) # b* (n+1) *h*w prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 0, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w send_to_top_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, 2 * w_shift_unit:] feat_sum = send_to_top_left[:, :-1, :, :].clone() prob_sum = send_to_top_left[:, -1:, :, :].clone() prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 1, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w top = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit] feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top) prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 2, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w top_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, :-2 * w_shift_unit] feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top_right) prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 3, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:] feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, left) prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 4, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w center = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, w_shift_unit:-w_shift_unit] feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, center) prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 5, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit] feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, right) prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 6, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w bottom_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, 2 * w_shift_unit:] feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_left) prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 7, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w bottom = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit] feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom) prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 8, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w bottom_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, :-2 * w_shift_unit] feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_right) pooled_feat = feat_sum / (prob_sum + 1e-8) if need_entry_prob: return pooled_feat, prob_sum return pooled_feat def get_spixel_size(affinity_map, sp_h=2, sp_w=2, elem_thres=25): N,C,H,W = affinity_map.shape device = affinity_map.device assign_max,_ = torch.max(affinity_map, dim=1, keepdim=True) assign_map = torch.where(affinity_map==assign_max, torch.ones(affinity_map.shape, device=device), torch.zeros(affinity_map.shape, device=device)) ## one_map = (N,1,H,W) _, elem_num_maps = poolfeat(torch.ones(assign_max.shape, device=device), assign_map, sp_h, sp_w, True) #all_one_map = torch.ones(elem_num_maps.shape).cuda() #empty_mask = torch.where(elem_num_maps < elem_thres/256, all_one_map, 1-all_one_map) return elem_num_maps def upfeat(input, prob, up_h=2, up_w=2): # input b*n*H*W downsampled # prob b*9*h*w b, c, h, w = input.shape h_shift = 1 w_shift = 1 p2d = (w_shift, w_shift, h_shift, h_shift) feat_pd = F.pad(input, p2d, mode='constant', value=0) gt_frm_top_left = F.interpolate(feat_pd[:, :, :-2 * h_shift, :-2 * w_shift], size=(h * up_h, w * up_w),mode='nearest') feat_sum = gt_frm_top_left * prob.narrow(1,0,1) top = F.interpolate(feat_pd[:, :, :-2 * h_shift, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest') feat_sum += top * prob.narrow(1, 1, 1) top_right = F.interpolate(feat_pd[:, :, :-2 * h_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest') feat_sum += top_right * prob.narrow(1,2,1) left = F.interpolate(feat_pd[:, :, h_shift:-w_shift, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest') feat_sum += left * prob.narrow(1, 3, 1) center = F.interpolate(input, (h * up_h, w * up_w), mode='nearest') feat_sum += center * prob.narrow(1, 4, 1) right = F.interpolate(feat_pd[:, :, h_shift:-w_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest') feat_sum += right * prob.narrow(1, 5, 1) bottom_left = F.interpolate(feat_pd[:, :, 2 * h_shift:, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest') feat_sum += bottom_left * prob.narrow(1, 6, 1) bottom = F.interpolate(feat_pd[:, :, 2 * h_shift:, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest') feat_sum += bottom * prob.narrow(1, 7, 1) bottom_right = F.interpolate(feat_pd[:, :, 2 * h_shift:, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest') feat_sum += bottom_right * prob.narrow(1, 8, 1) return feat_sum def suck_and_spread(self, base_maps, seg_layers): N,S,H,W = seg_layers.shape base_maps = base_maps.unsqueeze(1) seg_layers = seg_layers.unsqueeze(2) ## (N,S,C,1,1) = (N,1,C,H,W) * (N,S,1,H,W) mean_val_layers = (base_maps * seg_layers).sum(dim=(3,4), keepdim=True) / (1e-5 + seg_layers.sum(dim=(3,4), keepdim=True)) ## normalized to be sum one weight_layers = seg_layers / (1e-5 + torch.sum(seg_layers, dim=1, keepdim=True)) ## (N,S,C,H,W) = (N,S,C,1,1) * (N,S,1,H,W) recon_maps = mean_val_layers * weight_layers return recon_maps.sum(dim=1) #! copy from Richard Zhang [SIGGRAPH2017] # RGB grid points maps to Lab range: L[0,100], a[-86.183,98,233], b[-107.857,94.478] #------------------------------------------------------------------------------ def rgb2xyz(rgb): # rgb from [0,1] # xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423], # [0.212671, 0.715160, 0.072169], # [0.019334, 0.119193, 0.950227]]) mask = (rgb > .04045).type(torch.FloatTensor) if(rgb.is_cuda): mask = mask.cuda() rgb = (((rgb+.055)/1.055)**2.4)*mask + rgb/12.92*(1-mask) x = .412453*rgb[:,0,:,:]+.357580*rgb[:,1,:,:]+.180423*rgb[:,2,:,:] y = .212671*rgb[:,0,:,:]+.715160*rgb[:,1,:,:]+.072169*rgb[:,2,:,:] z = .019334*rgb[:,0,:,:]+.119193*rgb[:,1,:,:]+.950227*rgb[:,2,:,:] out = torch.cat((x[:,None,:,:],y[:,None,:,:],z[:,None,:,:]),dim=1) return out def xyz2rgb(xyz): # array([[ 3.24048134, -1.53715152, -0.49853633], # [-0.96925495, 1.87599 , 0.04155593], # [ 0.05564664, -0.20404134, 1.05731107]]) r = 3.24048134*xyz[:,0,:,:]-1.53715152*xyz[:,1,:,:]-0.49853633*xyz[:,2,:,:] g = -0.96925495*xyz[:,0,:,:]+1.87599*xyz[:,1,:,:]+.04155593*xyz[:,2,:,:] b = .05564664*xyz[:,0,:,:]-.20404134*xyz[:,1,:,:]+1.05731107*xyz[:,2,:,:] rgb = torch.cat((r[:,None,:,:],g[:,None,:,:],b[:,None,:,:]),dim=1) #! sometimes reaches a small negative number, which causes NaNs rgb = torch.max(rgb,torch.zeros_like(rgb)) mask = (rgb > .0031308).type(torch.FloatTensor) if(rgb.is_cuda): mask = mask.cuda() rgb = (1.055*(rgb**(1./2.4)) - 0.055)*mask + 12.92*rgb*(1-mask) return rgb def xyz2lab(xyz): # 0.95047, 1., 1.08883 # white sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None] if(xyz.is_cuda): sc = sc.cuda() xyz_scale = xyz/sc mask = (xyz_scale > .008856).type(torch.FloatTensor) if(xyz_scale.is_cuda): mask = mask.cuda() xyz_int = xyz_scale**(1/3.)*mask + (7.787*xyz_scale + 16./116.)*(1-mask) L = 116.*xyz_int[:,1,:,:]-16. a = 500.*(xyz_int[:,0,:,:]-xyz_int[:,1,:,:]) b = 200.*(xyz_int[:,1,:,:]-xyz_int[:,2,:,:]) out = torch.cat((L[:,None,:,:],a[:,None,:,:],b[:,None,:,:]),dim=1) return out def lab2xyz(lab): y_int = (lab[:,0,:,:]+16.)/116. x_int = (lab[:,1,:,:]/500.) + y_int z_int = y_int - (lab[:,2,:,:]/200.) if(z_int.is_cuda): z_int = torch.max(torch.Tensor((0,)).cuda(), z_int) else: z_int = torch.max(torch.Tensor((0,)), z_int) out = torch.cat((x_int[:,None,:,:],y_int[:,None,:,:],z_int[:,None,:,:]),dim=1) mask = (out > .2068966).type(torch.FloatTensor) if(out.is_cuda): mask = mask.cuda() out = (out**3.)*mask + (out - 16./116.)/7.787*(1-mask) sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None] sc = sc.to(out.device) out = out*sc return out def rgb2lab(rgb, l_mean=50, l_norm=50, ab_norm=110): #! input rgb: [0,1] #! output lab: [-1,1] lab = xyz2lab(rgb2xyz(rgb)) l_rs = (lab[:,[0],:,:]-l_mean) / l_norm ab_rs = lab[:,1:,:,:] / ab_norm out = torch.cat((l_rs,ab_rs),dim=1) return out def lab2rgb(lab_rs, l_mean=50, l_norm=50, ab_norm=110): #! input lab: [-1,1] #! output rgb: [0,1] l_ = lab_rs[:,[0],:,:] * l_norm + l_mean ab = lab_rs[:,1:,:,:] * ab_norm lab = torch.cat((l_,ab), dim=1) out = xyz2rgb(lab2xyz(lab)) return out if __name__ == '__main__': minL, minA, minB = 999., 999., 999. maxL, maxA, maxB = 0., 0., 0. for r in range(256): print('h',r) for g in range(256): for b in range(256): rgb = np.array([r,g,b], np.float32).reshape(1,1,-1) / 255.0 #lab_img = cv2.cvtColor(rgb, cv2.COLOR_RGB2LAB) rgb = torch.from_numpy(rgb.transpose((2, 0, 1))) rgb = rgb.reshape(1,3,1,1) lab = rgb2lab(rgb) lab[:,[0],:,:] = lab[:,[0],:,:] * 50 + 50 lab[:,1:,:,:] = lab[:,1:,:,:] * 110 lab = lab.squeeze() lab_float = lab.numpy() #print('zhang vs. cv2:', lab_float, lab_img.squeeze()) minL = min(lab_float[0], minL) minA = min(lab_float[1], minA) minB = min(lab_float[2], minB) maxL = max(lab_float[0], maxL) maxA = max(lab_float[1], maxA) maxB = max(lab_float[2], maxB) print('L:', minL, maxL) print('A:', minA, maxA) print('B:', minB, maxB)