doevent commited on
Commit
d8bb5e4
1 Parent(s): 6532b87

Upload models/network_swin2sr.py

Browse files
Files changed (1) hide show
  1. models/network_swin2sr.py +1010 -0
models/network_swin2sr.py ADDED
@@ -0,0 +1,1010 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -----------------------------------------------------------------------------------
2
+ # Swin2SR: Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration, https://arxiv.org/abs/
3
+ # Written by Conde and Choi et al.
4
+ # -----------------------------------------------------------------------------------
5
+
6
+ import math
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint as checkpoint
12
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
13
+
14
+
15
+ class Mlp(nn.Module):
16
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
17
+ super().__init__()
18
+ out_features = out_features or in_features
19
+ hidden_features = hidden_features or in_features
20
+ self.fc1 = nn.Linear(in_features, hidden_features)
21
+ self.act = act_layer()
22
+ self.fc2 = nn.Linear(hidden_features, out_features)
23
+ self.drop = nn.Dropout(drop)
24
+
25
+ def forward(self, x):
26
+ x = self.fc1(x)
27
+ x = self.act(x)
28
+ x = self.drop(x)
29
+ x = self.fc2(x)
30
+ x = self.drop(x)
31
+ return x
32
+
33
+
34
+ def window_partition(x, window_size):
35
+ """
36
+ Args:
37
+ x: (B, H, W, C)
38
+ window_size (int): window size
39
+ Returns:
40
+ windows: (num_windows*B, window_size, window_size, C)
41
+ """
42
+ B, H, W, C = x.shape
43
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
44
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
45
+ return windows
46
+
47
+
48
+ def window_reverse(windows, window_size, H, W):
49
+ """
50
+ Args:
51
+ windows: (num_windows*B, window_size, window_size, C)
52
+ window_size (int): Window size
53
+ H (int): Height of image
54
+ W (int): Width of image
55
+ Returns:
56
+ x: (B, H, W, C)
57
+ """
58
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
59
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
60
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
61
+ return x
62
+
63
+ class WindowAttention(nn.Module):
64
+ r""" Window based multi-head self attention (W-MSA) module with relative position bias.
65
+ It supports both of shifted and non-shifted window.
66
+ Args:
67
+ dim (int): Number of input channels.
68
+ window_size (tuple[int]): The height and width of the window.
69
+ num_heads (int): Number of attention heads.
70
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
71
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
72
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
73
+ pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
74
+ """
75
+
76
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
77
+ pretrained_window_size=[0, 0]):
78
+
79
+ super().__init__()
80
+ self.dim = dim
81
+ self.window_size = window_size # Wh, Ww
82
+ self.pretrained_window_size = pretrained_window_size
83
+ self.num_heads = num_heads
84
+
85
+ self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
86
+
87
+ # mlp to generate continuous relative position bias
88
+ self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
89
+ nn.ReLU(inplace=True),
90
+ nn.Linear(512, num_heads, bias=False))
91
+
92
+ # get relative_coords_table
93
+ relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
94
+ relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
95
+ relative_coords_table = torch.stack(
96
+ torch.meshgrid([relative_coords_h,
97
+ relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
98
+ if pretrained_window_size[0] > 0:
99
+ relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
100
+ relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
101
+ else:
102
+ relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
103
+ relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
104
+ relative_coords_table *= 8 # normalize to -8, 8
105
+ relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
106
+ torch.abs(relative_coords_table) + 1.0) / np.log2(8)
107
+
108
+ self.register_buffer("relative_coords_table", relative_coords_table)
109
+
110
+ # get pair-wise relative position index for each token inside the window
111
+ coords_h = torch.arange(self.window_size[0])
112
+ coords_w = torch.arange(self.window_size[1])
113
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
114
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
115
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
116
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
117
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
118
+ relative_coords[:, :, 1] += self.window_size[1] - 1
119
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
120
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
121
+ self.register_buffer("relative_position_index", relative_position_index)
122
+
123
+ self.qkv = nn.Linear(dim, dim * 3, bias=False)
124
+ if qkv_bias:
125
+ self.q_bias = nn.Parameter(torch.zeros(dim))
126
+ self.v_bias = nn.Parameter(torch.zeros(dim))
127
+ else:
128
+ self.q_bias = None
129
+ self.v_bias = None
130
+ self.attn_drop = nn.Dropout(attn_drop)
131
+ self.proj = nn.Linear(dim, dim)
132
+ self.proj_drop = nn.Dropout(proj_drop)
133
+ self.softmax = nn.Softmax(dim=-1)
134
+
135
+ def forward(self, x, mask=None):
136
+ """
137
+ Args:
138
+ x: input features with shape of (num_windows*B, N, C)
139
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
140
+ """
141
+ B_, N, C = x.shape
142
+ qkv_bias = None
143
+ if self.q_bias is not None:
144
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
145
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
146
+ qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
147
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
148
+
149
+ # cosine attention
150
+ attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
151
+ logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)).exp()
152
+ attn = attn * logit_scale
153
+
154
+ relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
155
+ relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
156
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
157
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
158
+ relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
159
+ attn = attn + relative_position_bias.unsqueeze(0)
160
+
161
+ if mask is not None:
162
+ nW = mask.shape[0]
163
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
164
+ attn = attn.view(-1, self.num_heads, N, N)
165
+ attn = self.softmax(attn)
166
+ else:
167
+ attn = self.softmax(attn)
168
+
169
+ attn = self.attn_drop(attn)
170
+
171
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
172
+ x = self.proj(x)
173
+ x = self.proj_drop(x)
174
+ return x
175
+
176
+ def extra_repr(self) -> str:
177
+ return f'dim={self.dim}, window_size={self.window_size}, ' \
178
+ f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
179
+
180
+ def flops(self, N):
181
+ # calculate flops for 1 window with token length of N
182
+ flops = 0
183
+ # qkv = self.qkv(x)
184
+ flops += N * self.dim * 3 * self.dim
185
+ # attn = (q @ k.transpose(-2, -1))
186
+ flops += self.num_heads * N * (self.dim // self.num_heads) * N
187
+ # x = (attn @ v)
188
+ flops += self.num_heads * N * N * (self.dim // self.num_heads)
189
+ # x = self.proj(x)
190
+ flops += N * self.dim * self.dim
191
+ return flops
192
+
193
+ class SwinTransformerBlock(nn.Module):
194
+ r""" Swin Transformer Block.
195
+ Args:
196
+ dim (int): Number of input channels.
197
+ input_resolution (tuple[int]): Input resulotion.
198
+ num_heads (int): Number of attention heads.
199
+ window_size (int): Window size.
200
+ shift_size (int): Shift size for SW-MSA.
201
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
202
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
203
+ drop (float, optional): Dropout rate. Default: 0.0
204
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
205
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
206
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
207
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
208
+ pretrained_window_size (int): Window size in pre-training.
209
+ """
210
+
211
+ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
212
+ mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
213
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
214
+ super().__init__()
215
+ self.dim = dim
216
+ self.input_resolution = input_resolution
217
+ self.num_heads = num_heads
218
+ self.window_size = window_size
219
+ self.shift_size = shift_size
220
+ self.mlp_ratio = mlp_ratio
221
+ if min(self.input_resolution) <= self.window_size:
222
+ # if window size is larger than input resolution, we don't partition windows
223
+ self.shift_size = 0
224
+ self.window_size = min(self.input_resolution)
225
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
226
+
227
+ self.norm1 = norm_layer(dim)
228
+ self.attn = WindowAttention(
229
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
230
+ qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
231
+ pretrained_window_size=to_2tuple(pretrained_window_size))
232
+
233
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
234
+ self.norm2 = norm_layer(dim)
235
+ mlp_hidden_dim = int(dim * mlp_ratio)
236
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
237
+
238
+ if self.shift_size > 0:
239
+ attn_mask = self.calculate_mask(self.input_resolution)
240
+ else:
241
+ attn_mask = None
242
+
243
+ self.register_buffer("attn_mask", attn_mask)
244
+
245
+ def calculate_mask(self, x_size):
246
+ # calculate attention mask for SW-MSA
247
+ H, W = x_size
248
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
249
+ h_slices = (slice(0, -self.window_size),
250
+ slice(-self.window_size, -self.shift_size),
251
+ slice(-self.shift_size, None))
252
+ w_slices = (slice(0, -self.window_size),
253
+ slice(-self.window_size, -self.shift_size),
254
+ slice(-self.shift_size, None))
255
+ cnt = 0
256
+ for h in h_slices:
257
+ for w in w_slices:
258
+ img_mask[:, h, w, :] = cnt
259
+ cnt += 1
260
+
261
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
262
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
263
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
264
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
265
+
266
+ return attn_mask
267
+
268
+ def forward(self, x, x_size):
269
+ H, W = x_size
270
+ B, L, C = x.shape
271
+ #assert L == H * W, "input feature has wrong size"
272
+
273
+ shortcut = x
274
+ x = x.view(B, H, W, C)
275
+
276
+ # cyclic shift
277
+ if self.shift_size > 0:
278
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
279
+ else:
280
+ shifted_x = x
281
+
282
+ # partition windows
283
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
284
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
285
+
286
+ # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
287
+ if self.input_resolution == x_size:
288
+ attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
289
+ else:
290
+ attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
291
+
292
+ # merge windows
293
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
294
+ shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
295
+
296
+ # reverse cyclic shift
297
+ if self.shift_size > 0:
298
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
299
+ else:
300
+ x = shifted_x
301
+ x = x.view(B, H * W, C)
302
+ x = shortcut + self.drop_path(self.norm1(x))
303
+
304
+ # FFN
305
+ x = x + self.drop_path(self.norm2(self.mlp(x)))
306
+
307
+ return x
308
+
309
+ def extra_repr(self) -> str:
310
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
311
+ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
312
+
313
+ def flops(self):
314
+ flops = 0
315
+ H, W = self.input_resolution
316
+ # norm1
317
+ flops += self.dim * H * W
318
+ # W-MSA/SW-MSA
319
+ nW = H * W / self.window_size / self.window_size
320
+ flops += nW * self.attn.flops(self.window_size * self.window_size)
321
+ # mlp
322
+ flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
323
+ # norm2
324
+ flops += self.dim * H * W
325
+ return flops
326
+
327
+ class PatchMerging(nn.Module):
328
+ r""" Patch Merging Layer.
329
+ Args:
330
+ input_resolution (tuple[int]): Resolution of input feature.
331
+ dim (int): Number of input channels.
332
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
333
+ """
334
+
335
+ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
336
+ super().__init__()
337
+ self.input_resolution = input_resolution
338
+ self.dim = dim
339
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
340
+ self.norm = norm_layer(2 * dim)
341
+
342
+ def forward(self, x):
343
+ """
344
+ x: B, H*W, C
345
+ """
346
+ H, W = self.input_resolution
347
+ B, L, C = x.shape
348
+ assert L == H * W, "input feature has wrong size"
349
+ assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
350
+
351
+ x = x.view(B, H, W, C)
352
+
353
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
354
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
355
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
356
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
357
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
358
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
359
+
360
+ x = self.reduction(x)
361
+ x = self.norm(x)
362
+
363
+ return x
364
+
365
+ def extra_repr(self) -> str:
366
+ return f"input_resolution={self.input_resolution}, dim={self.dim}"
367
+
368
+ def flops(self):
369
+ H, W = self.input_resolution
370
+ flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
371
+ flops += H * W * self.dim // 2
372
+ return flops
373
+
374
+ class BasicLayer(nn.Module):
375
+ """ A basic Swin Transformer layer for one stage.
376
+ Args:
377
+ dim (int): Number of input channels.
378
+ input_resolution (tuple[int]): Input resolution.
379
+ depth (int): Number of blocks.
380
+ num_heads (int): Number of attention heads.
381
+ window_size (int): Local window size.
382
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
383
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
384
+ drop (float, optional): Dropout rate. Default: 0.0
385
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
386
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
387
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
388
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
389
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
390
+ pretrained_window_size (int): Local window size in pre-training.
391
+ """
392
+
393
+ def __init__(self, dim, input_resolution, depth, num_heads, window_size,
394
+ mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
395
+ drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
396
+ pretrained_window_size=0):
397
+
398
+ super().__init__()
399
+ self.dim = dim
400
+ self.input_resolution = input_resolution
401
+ self.depth = depth
402
+ self.use_checkpoint = use_checkpoint
403
+
404
+ # build blocks
405
+ self.blocks = nn.ModuleList([
406
+ SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
407
+ num_heads=num_heads, window_size=window_size,
408
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
409
+ mlp_ratio=mlp_ratio,
410
+ qkv_bias=qkv_bias,
411
+ drop=drop, attn_drop=attn_drop,
412
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
413
+ norm_layer=norm_layer,
414
+ pretrained_window_size=pretrained_window_size)
415
+ for i in range(depth)])
416
+
417
+ # patch merging layer
418
+ if downsample is not None:
419
+ self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
420
+ else:
421
+ self.downsample = None
422
+
423
+ def forward(self, x, x_size):
424
+ for blk in self.blocks:
425
+ if self.use_checkpoint:
426
+ x = checkpoint.checkpoint(blk, x, x_size)
427
+ else:
428
+ x = blk(x, x_size)
429
+ if self.downsample is not None:
430
+ x = self.downsample(x)
431
+ return x
432
+
433
+ def extra_repr(self) -> str:
434
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
435
+
436
+ def flops(self):
437
+ flops = 0
438
+ for blk in self.blocks:
439
+ flops += blk.flops()
440
+ if self.downsample is not None:
441
+ flops += self.downsample.flops()
442
+ return flops
443
+
444
+ def _init_respostnorm(self):
445
+ for blk in self.blocks:
446
+ nn.init.constant_(blk.norm1.bias, 0)
447
+ nn.init.constant_(blk.norm1.weight, 0)
448
+ nn.init.constant_(blk.norm2.bias, 0)
449
+ nn.init.constant_(blk.norm2.weight, 0)
450
+
451
+ class PatchEmbed(nn.Module):
452
+ r""" Image to Patch Embedding
453
+ Args:
454
+ img_size (int): Image size. Default: 224.
455
+ patch_size (int): Patch token size. Default: 4.
456
+ in_chans (int): Number of input image channels. Default: 3.
457
+ embed_dim (int): Number of linear projection output channels. Default: 96.
458
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
459
+ """
460
+
461
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
462
+ super().__init__()
463
+ img_size = to_2tuple(img_size)
464
+ patch_size = to_2tuple(patch_size)
465
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
466
+ self.img_size = img_size
467
+ self.patch_size = patch_size
468
+ self.patches_resolution = patches_resolution
469
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
470
+
471
+ self.in_chans = in_chans
472
+ self.embed_dim = embed_dim
473
+
474
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
475
+ if norm_layer is not None:
476
+ self.norm = norm_layer(embed_dim)
477
+ else:
478
+ self.norm = None
479
+
480
+ def forward(self, x):
481
+ B, C, H, W = x.shape
482
+ # FIXME look at relaxing size constraints
483
+ # assert H == self.img_size[0] and W == self.img_size[1],
484
+ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
485
+ x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
486
+ if self.norm is not None:
487
+ x = self.norm(x)
488
+ return x
489
+
490
+ def flops(self):
491
+ Ho, Wo = self.patches_resolution
492
+ flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
493
+ if self.norm is not None:
494
+ flops += Ho * Wo * self.embed_dim
495
+ return flops
496
+
497
+ class RSTB(nn.Module):
498
+ """Residual Swin Transformer Block (RSTB).
499
+ Args:
500
+ dim (int): Number of input channels.
501
+ input_resolution (tuple[int]): Input resolution.
502
+ depth (int): Number of blocks.
503
+ num_heads (int): Number of attention heads.
504
+ window_size (int): Local window size.
505
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
506
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
507
+ drop (float, optional): Dropout rate. Default: 0.0
508
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
509
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
510
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
511
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
512
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
513
+ img_size: Input image size.
514
+ patch_size: Patch size.
515
+ resi_connection: The convolutional block before residual connection.
516
+ """
517
+
518
+ def __init__(self, dim, input_resolution, depth, num_heads, window_size,
519
+ mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
520
+ drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
521
+ img_size=224, patch_size=4, resi_connection='1conv'):
522
+ super(RSTB, self).__init__()
523
+
524
+ self.dim = dim
525
+ self.input_resolution = input_resolution
526
+
527
+ self.residual_group = BasicLayer(dim=dim,
528
+ input_resolution=input_resolution,
529
+ depth=depth,
530
+ num_heads=num_heads,
531
+ window_size=window_size,
532
+ mlp_ratio=mlp_ratio,
533
+ qkv_bias=qkv_bias,
534
+ drop=drop, attn_drop=attn_drop,
535
+ drop_path=drop_path,
536
+ norm_layer=norm_layer,
537
+ downsample=downsample,
538
+ use_checkpoint=use_checkpoint)
539
+
540
+ if resi_connection == '1conv':
541
+ self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
542
+ elif resi_connection == '3conv':
543
+ # to save parameters and memory
544
+ self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
545
+ nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
546
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
547
+ nn.Conv2d(dim // 4, dim, 3, 1, 1))
548
+
549
+ self.patch_embed = PatchEmbed(
550
+ img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
551
+ norm_layer=None)
552
+
553
+ self.patch_unembed = PatchUnEmbed(
554
+ img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
555
+ norm_layer=None)
556
+
557
+ def forward(self, x, x_size):
558
+ return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
559
+
560
+ def flops(self):
561
+ flops = 0
562
+ flops += self.residual_group.flops()
563
+ H, W = self.input_resolution
564
+ flops += H * W * self.dim * self.dim * 9
565
+ flops += self.patch_embed.flops()
566
+ flops += self.patch_unembed.flops()
567
+
568
+ return flops
569
+
570
+ class PatchUnEmbed(nn.Module):
571
+ r""" Image to Patch Unembedding
572
+ Args:
573
+ img_size (int): Image size. Default: 224.
574
+ patch_size (int): Patch token size. Default: 4.
575
+ in_chans (int): Number of input image channels. Default: 3.
576
+ embed_dim (int): Number of linear projection output channels. Default: 96.
577
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
578
+ """
579
+
580
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
581
+ super().__init__()
582
+ img_size = to_2tuple(img_size)
583
+ patch_size = to_2tuple(patch_size)
584
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
585
+ self.img_size = img_size
586
+ self.patch_size = patch_size
587
+ self.patches_resolution = patches_resolution
588
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
589
+
590
+ self.in_chans = in_chans
591
+ self.embed_dim = embed_dim
592
+
593
+ def forward(self, x, x_size):
594
+ B, HW, C = x.shape
595
+ x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
596
+ return x
597
+
598
+ def flops(self):
599
+ flops = 0
600
+ return flops
601
+
602
+
603
+ class Upsample(nn.Sequential):
604
+ """Upsample module.
605
+ Args:
606
+ scale (int): Scale factor. Supported scales: 2^n and 3.
607
+ num_feat (int): Channel number of intermediate features.
608
+ """
609
+
610
+ def __init__(self, scale, num_feat):
611
+ m = []
612
+ if (scale & (scale - 1)) == 0: # scale = 2^n
613
+ for _ in range(int(math.log(scale, 2))):
614
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
615
+ m.append(nn.PixelShuffle(2))
616
+ elif scale == 3:
617
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
618
+ m.append(nn.PixelShuffle(3))
619
+ else:
620
+ raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
621
+ super(Upsample, self).__init__(*m)
622
+
623
+ class Upsample_hf(nn.Sequential):
624
+ """Upsample module.
625
+ Args:
626
+ scale (int): Scale factor. Supported scales: 2^n and 3.
627
+ num_feat (int): Channel number of intermediate features.
628
+ """
629
+
630
+ def __init__(self, scale, num_feat):
631
+ m = []
632
+ if (scale & (scale - 1)) == 0: # scale = 2^n
633
+ for _ in range(int(math.log(scale, 2))):
634
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
635
+ m.append(nn.PixelShuffle(2))
636
+ elif scale == 3:
637
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
638
+ m.append(nn.PixelShuffle(3))
639
+ else:
640
+ raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
641
+ super(Upsample_hf, self).__init__(*m)
642
+
643
+
644
+ class UpsampleOneStep(nn.Sequential):
645
+ """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
646
+ Used in lightweight SR to save parameters.
647
+ Args:
648
+ scale (int): Scale factor. Supported scales: 2^n and 3.
649
+ num_feat (int): Channel number of intermediate features.
650
+ """
651
+
652
+ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
653
+ self.num_feat = num_feat
654
+ self.input_resolution = input_resolution
655
+ m = []
656
+ m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
657
+ m.append(nn.PixelShuffle(scale))
658
+ super(UpsampleOneStep, self).__init__(*m)
659
+
660
+ def flops(self):
661
+ H, W = self.input_resolution
662
+ flops = H * W * self.num_feat * 3 * 9
663
+ return flops
664
+
665
+
666
+
667
+ class Swin2SR(nn.Module):
668
+ r""" Swin2SR
669
+ A PyTorch impl of : `Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration`.
670
+ Args:
671
+ img_size (int | tuple(int)): Input image size. Default 64
672
+ patch_size (int | tuple(int)): Patch size. Default: 1
673
+ in_chans (int): Number of input image channels. Default: 3
674
+ embed_dim (int): Patch embedding dimension. Default: 96
675
+ depths (tuple(int)): Depth of each Swin Transformer layer.
676
+ num_heads (tuple(int)): Number of attention heads in different layers.
677
+ window_size (int): Window size. Default: 7
678
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
679
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
680
+ drop_rate (float): Dropout rate. Default: 0
681
+ attn_drop_rate (float): Attention dropout rate. Default: 0
682
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1
683
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
684
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
685
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True
686
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
687
+ upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
688
+ img_range: Image range. 1. or 255.
689
+ upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
690
+ resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
691
+ """
692
+
693
+ def __init__(self, img_size=64, patch_size=1, in_chans=3,
694
+ embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
695
+ window_size=7, mlp_ratio=4., qkv_bias=True,
696
+ drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
697
+ norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
698
+ use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
699
+ **kwargs):
700
+ super(Swin2SR, self).__init__()
701
+ num_in_ch = in_chans
702
+ num_out_ch = in_chans
703
+ num_feat = 64
704
+ self.img_range = img_range
705
+ if in_chans == 3:
706
+ rgb_mean = (0.4488, 0.4371, 0.4040)
707
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
708
+ else:
709
+ self.mean = torch.zeros(1, 1, 1, 1)
710
+ self.upscale = upscale
711
+ self.upsampler = upsampler
712
+ self.window_size = window_size
713
+
714
+ #####################################################################################################
715
+ ################################### 1, shallow feature extraction ###################################
716
+ self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
717
+
718
+ #####################################################################################################
719
+ ################################### 2, deep feature extraction ######################################
720
+ self.num_layers = len(depths)
721
+ self.embed_dim = embed_dim
722
+ self.ape = ape
723
+ self.patch_norm = patch_norm
724
+ self.num_features = embed_dim
725
+ self.mlp_ratio = mlp_ratio
726
+
727
+ # split image into non-overlapping patches
728
+ self.patch_embed = PatchEmbed(
729
+ img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
730
+ norm_layer=norm_layer if self.patch_norm else None)
731
+ num_patches = self.patch_embed.num_patches
732
+ patches_resolution = self.patch_embed.patches_resolution
733
+ self.patches_resolution = patches_resolution
734
+
735
+ # merge non-overlapping patches into image
736
+ self.patch_unembed = PatchUnEmbed(
737
+ img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
738
+ norm_layer=norm_layer if self.patch_norm else None)
739
+
740
+ # absolute position embedding
741
+ if self.ape:
742
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
743
+ trunc_normal_(self.absolute_pos_embed, std=.02)
744
+
745
+ self.pos_drop = nn.Dropout(p=drop_rate)
746
+
747
+ # stochastic depth
748
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
749
+
750
+ # build Residual Swin Transformer blocks (RSTB)
751
+ self.layers = nn.ModuleList()
752
+ for i_layer in range(self.num_layers):
753
+ layer = RSTB(dim=embed_dim,
754
+ input_resolution=(patches_resolution[0],
755
+ patches_resolution[1]),
756
+ depth=depths[i_layer],
757
+ num_heads=num_heads[i_layer],
758
+ window_size=window_size,
759
+ mlp_ratio=self.mlp_ratio,
760
+ qkv_bias=qkv_bias,
761
+ drop=drop_rate, attn_drop=attn_drop_rate,
762
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
763
+ norm_layer=norm_layer,
764
+ downsample=None,
765
+ use_checkpoint=use_checkpoint,
766
+ img_size=img_size,
767
+ patch_size=patch_size,
768
+ resi_connection=resi_connection
769
+
770
+ )
771
+ self.layers.append(layer)
772
+
773
+ if self.upsampler == 'pixelshuffle_hf':
774
+ self.layers_hf = nn.ModuleList()
775
+ for i_layer in range(self.num_layers):
776
+ layer = RSTB(dim=embed_dim,
777
+ input_resolution=(patches_resolution[0],
778
+ patches_resolution[1]),
779
+ depth=depths[i_layer],
780
+ num_heads=num_heads[i_layer],
781
+ window_size=window_size,
782
+ mlp_ratio=self.mlp_ratio,
783
+ qkv_bias=qkv_bias,
784
+ drop=drop_rate, attn_drop=attn_drop_rate,
785
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
786
+ norm_layer=norm_layer,
787
+ downsample=None,
788
+ use_checkpoint=use_checkpoint,
789
+ img_size=img_size,
790
+ patch_size=patch_size,
791
+ resi_connection=resi_connection
792
+
793
+ )
794
+ self.layers_hf.append(layer)
795
+
796
+ self.norm = norm_layer(self.num_features)
797
+
798
+ # build the last conv layer in deep feature extraction
799
+ if resi_connection == '1conv':
800
+ self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
801
+ elif resi_connection == '3conv':
802
+ # to save parameters and memory
803
+ self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
804
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
805
+ nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
806
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
807
+ nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
808
+
809
+ #####################################################################################################
810
+ ################################ 3, high quality image reconstruction ################################
811
+ if self.upsampler == 'pixelshuffle':
812
+ # for classical SR
813
+ self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
814
+ nn.LeakyReLU(inplace=True))
815
+ self.upsample = Upsample(upscale, num_feat)
816
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
817
+ elif self.upsampler == 'pixelshuffle_aux':
818
+ self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
819
+ self.conv_before_upsample = nn.Sequential(
820
+ nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
821
+ nn.LeakyReLU(inplace=True))
822
+ self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
823
+ self.conv_after_aux = nn.Sequential(
824
+ nn.Conv2d(3, num_feat, 3, 1, 1),
825
+ nn.LeakyReLU(inplace=True))
826
+ self.upsample = Upsample(upscale, num_feat)
827
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
828
+
829
+ elif self.upsampler == 'pixelshuffle_hf':
830
+ self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
831
+ nn.LeakyReLU(inplace=True))
832
+ self.upsample = Upsample(upscale, num_feat)
833
+ self.upsample_hf = Upsample_hf(upscale, num_feat)
834
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
835
+ self.conv_first_hf = nn.Sequential(nn.Conv2d(num_feat, embed_dim, 3, 1, 1),
836
+ nn.LeakyReLU(inplace=True))
837
+ self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
838
+ self.conv_before_upsample_hf = nn.Sequential(
839
+ nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
840
+ nn.LeakyReLU(inplace=True))
841
+ self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
842
+
843
+ elif self.upsampler == 'pixelshuffledirect':
844
+ # for lightweight SR (to save parameters)
845
+ self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
846
+ (patches_resolution[0], patches_resolution[1]))
847
+ elif self.upsampler == 'nearest+conv':
848
+ # for real-world SR (less artifacts)
849
+ assert self.upscale == 4, 'only support x4 now.'
850
+ self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
851
+ nn.LeakyReLU(inplace=True))
852
+ self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
853
+ self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
854
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
855
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
856
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
857
+ else:
858
+ # for image denoising and JPEG compression artifact reduction
859
+ self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
860
+
861
+ self.apply(self._init_weights)
862
+
863
+ def _init_weights(self, m):
864
+ if isinstance(m, nn.Linear):
865
+ trunc_normal_(m.weight, std=.02)
866
+ if isinstance(m, nn.Linear) and m.bias is not None:
867
+ nn.init.constant_(m.bias, 0)
868
+ elif isinstance(m, nn.LayerNorm):
869
+ nn.init.constant_(m.bias, 0)
870
+ nn.init.constant_(m.weight, 1.0)
871
+
872
+ @torch.jit.ignore
873
+ def no_weight_decay(self):
874
+ return {'absolute_pos_embed'}
875
+
876
+ @torch.jit.ignore
877
+ def no_weight_decay_keywords(self):
878
+ return {'relative_position_bias_table'}
879
+
880
+ def check_image_size(self, x):
881
+ _, _, h, w = x.size()
882
+ mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
883
+ mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
884
+ x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
885
+ return x
886
+
887
+ def forward_features(self, x):
888
+ x_size = (x.shape[2], x.shape[3])
889
+ x = self.patch_embed(x)
890
+ if self.ape:
891
+ x = x + self.absolute_pos_embed
892
+ x = self.pos_drop(x)
893
+
894
+ for layer in self.layers:
895
+ x = layer(x, x_size)
896
+
897
+ x = self.norm(x) # B L C
898
+ x = self.patch_unembed(x, x_size)
899
+
900
+ return x
901
+
902
+ def forward_features_hf(self, x):
903
+ x_size = (x.shape[2], x.shape[3])
904
+ x = self.patch_embed(x)
905
+ if self.ape:
906
+ x = x + self.absolute_pos_embed
907
+ x = self.pos_drop(x)
908
+
909
+ for layer in self.layers_hf:
910
+ x = layer(x, x_size)
911
+
912
+ x = self.norm(x) # B L C
913
+ x = self.patch_unembed(x, x_size)
914
+
915
+ return x
916
+
917
+ def forward(self, x):
918
+ H, W = x.shape[2:]
919
+ x = self.check_image_size(x)
920
+
921
+ self.mean = self.mean.type_as(x)
922
+ x = (x - self.mean) * self.img_range
923
+
924
+ if self.upsampler == 'pixelshuffle':
925
+ # for classical SR
926
+ x = self.conv_first(x)
927
+ x = self.conv_after_body(self.forward_features(x)) + x
928
+ x = self.conv_before_upsample(x)
929
+ x = self.conv_last(self.upsample(x))
930
+ elif self.upsampler == 'pixelshuffle_aux':
931
+ bicubic = F.interpolate(x, size=(H * self.upscale, W * self.upscale), mode='bicubic', align_corners=False)
932
+ bicubic = self.conv_bicubic(bicubic)
933
+ x = self.conv_first(x)
934
+ x = self.conv_after_body(self.forward_features(x)) + x
935
+ x = self.conv_before_upsample(x)
936
+ aux = self.conv_aux(x) # b, 3, LR_H, LR_W
937
+ x = self.conv_after_aux(aux)
938
+ x = self.upsample(x)[:, :, :H * self.upscale, :W * self.upscale] + bicubic[:, :, :H * self.upscale, :W * self.upscale]
939
+ x = self.conv_last(x)
940
+ aux = aux / self.img_range + self.mean
941
+ elif self.upsampler == 'pixelshuffle_hf':
942
+ # for classical SR with HF
943
+ x = self.conv_first(x)
944
+ x = self.conv_after_body(self.forward_features(x)) + x
945
+ x_before = self.conv_before_upsample(x)
946
+ x_out = self.conv_last(self.upsample(x_before))
947
+
948
+ x_hf = self.conv_first_hf(x_before)
949
+ x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf
950
+ x_hf = self.conv_before_upsample_hf(x_hf)
951
+ x_hf = self.conv_last_hf(self.upsample_hf(x_hf))
952
+ x = x_out + x_hf
953
+ x_hf = x_hf / self.img_range + self.mean
954
+
955
+ elif self.upsampler == 'pixelshuffledirect':
956
+ # for lightweight SR
957
+ x = self.conv_first(x)
958
+ x = self.conv_after_body(self.forward_features(x)) + x
959
+ x = self.upsample(x)
960
+ elif self.upsampler == 'nearest+conv':
961
+ # for real-world SR
962
+ x = self.conv_first(x)
963
+ x = self.conv_after_body(self.forward_features(x)) + x
964
+ x = self.conv_before_upsample(x)
965
+ x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
966
+ x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
967
+ x = self.conv_last(self.lrelu(self.conv_hr(x)))
968
+ else:
969
+ # for image denoising and JPEG compression artifact reduction
970
+ x_first = self.conv_first(x)
971
+ res = self.conv_after_body(self.forward_features(x_first)) + x_first
972
+ x = x + self.conv_last(res)
973
+
974
+ x = x / self.img_range + self.mean
975
+ if self.upsampler == "pixelshuffle_aux":
976
+ return x[:, :, :H*self.upscale, :W*self.upscale], aux
977
+
978
+ elif self.upsampler == "pixelshuffle_hf":
979
+ x_out = x_out / self.img_range + self.mean
980
+ return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale]
981
+
982
+ else:
983
+ return x[:, :, :H*self.upscale, :W*self.upscale]
984
+
985
+ def flops(self):
986
+ flops = 0
987
+ H, W = self.patches_resolution
988
+ flops += H * W * 3 * self.embed_dim * 9
989
+ flops += self.patch_embed.flops()
990
+ for i, layer in enumerate(self.layers):
991
+ flops += layer.flops()
992
+ flops += H * W * 3 * self.embed_dim * self.embed_dim
993
+ flops += self.upsample.flops()
994
+ return flops
995
+
996
+
997
+ if __name__ == '__main__':
998
+ upscale = 4
999
+ window_size = 8
1000
+ height = (1024 // upscale // window_size + 1) * window_size
1001
+ width = (720 // upscale // window_size + 1) * window_size
1002
+ model = Swin2SR(upscale=2, img_size=(height, width),
1003
+ window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
1004
+ embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
1005
+ print(model)
1006
+ print(height, width, model.flops() / 1e9)
1007
+
1008
+ x = torch.randn((1, 3, height, width))
1009
+ x = model(x)
1010
+ print(x.shape)