import os import datasets import fuego import gradio as gr from datasets import load_dataset from huggingface_hub import HfFolder, create_repo, delete_repo, login from PIL import Image datasets.disable_caching() login(token=os.getenv("HUGGING_FACE_HUB_TOKEN", HfFolder.get_token()), add_to_git_credential=True) labeled_samples_repo_id = create_repo("actlearn_labeled_samples", exist_ok=True, repo_type="dataset").repo_id unlabled_samples_repo_id = create_repo("actlearn_unlabeled_samples", exist_ok=True, repo_type="dataset").repo_id to_label_samples_repo_id = create_repo("actlearn_to_label_samples", exist_ok=True, repo_type="dataset").repo_id test_dataset_repo_id = create_repo("actlearn_test_mnist", exist_ok=True, repo_type="dataset").repo_id model_repo_id = create_repo("actlearn_mnist_model", exist_ok=True).repo_id idx = 0 try: data_to_label = load_dataset(to_label_samples_repo_id) imgs = data_to_label["train"]["image"] except: imgs = None data_to_label = None def get_image(): global idx if imgs is None: return None new_img = imgs[idx] idx += 1 return new_img labeled_data = [] information = """# Active Learning Demo This demo showcases Active Learning, which is great when labeling is expensive. In this demo, you will label images by choosing a digit (0-9). How does this work? * There is a large pool of unlabeled images * A model is trained with the few labeled images * We can then use the model to pick the images with the lowest confidence or with the lowest probability of corresponding to an image. These are the images for which the model is confused, so by improving them, the quality of the model can improve much more than queries for which the model was already doing well! * In this UI, you will be provided a couple of images to label * Once all the provided images are labeled, the model is retrained, and a new set of images is chosen! """ training_info = """## Model Retraining There are new labeled images. The model is retraining. Follow progress in the "fuego" space that was spun up for you in your profile. """ with gr.Blocks() as demo: gr.Markdown(information) img_to_label = gr.Image(shape=[28, 28], value=get_image(), visible=True if imgs is not None else False) label_dropdown = gr.Dropdown( choices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], interactive=True, value=0, visible=True if imgs is not None else False ) save_btn = gr.Button("Save label", visible=True if imgs is not None else False) output_box = gr.Markdown(value=training_info, visible=False) reload_btn = gr.Button("Reload", visible=False if imgs is not None else True) def save_data(img, label): global labeled_data global idx labeled_data.append([img, label]) if imgs is not None and len(imgs) == idx: # Remove dataset of queries to label # datasets library does not allow pushing an empty dataset, so as a # workaround we just delete the repo delete_repo(repo_id=to_label_samples_repo_id, repo_type="dataset") create_repo(repo_id=to_label_samples_repo_id, repo_type="dataset") # Push to training dataset labeled_dataset = load_dataset(labeled_samples_repo_id)["train"] feature = datasets.Image(decode=False) for img, label in labeled_data: # Hack due to https://github.com/huggingface/datasets/issues/4796 labeled_dataset = labeled_dataset.add_item( {"image": feature.encode_example(Image.fromarray(img)), "label": label} ) labeled_dataset.push_to_hub(labeled_samples_repo_id) # Clean up data labeled_data = [] idx = 0 fuego.run("training/run.py", "training/requirements.txt", space_id="actlearn-fuego-runner") # Update UI return { img_to_label: gr.update(visible=False), label_dropdown: gr.update(visible=False), save_btn: gr.update(visible=False), output_box: gr.update(visible=True, value=training_info), reload_btn: gr.update(visible=True), } else: return {img_to_label: gr.update(value=get_image())} def reload_data(): global data_to_label global imgs try: # See if there is new data to be labeled data_to_label = load_dataset(to_label_samples_repo_id) imgs = data_to_label["train"]["image"] except Exception: imgs = None data_to_label = None return { img_to_label: gr.update(visible=False, value=None), label_dropdown: gr.update(visible=False), save_btn: gr.update(visible=False), output_box: gr.update(visible=True, value="No more images to label"), reload_btn: gr.update(visible=True), } if len(imgs) == 0: return else: global idx idx = 0 return { img_to_label: gr.update(visible=True, value=get_image()), label_dropdown: gr.update(visible=True), save_btn: gr.update(visible=True), output_box: gr.update(visible=False), reload_btn: gr.update(visible=False), } save_btn.click( save_data, inputs=[img_to_label, label_dropdown], outputs=[img_to_label, label_dropdown, save_btn, output_box, reload_btn], ) reload_btn.click(reload_data, outputs=[img_to_label, label_dropdown, save_btn, output_box, reload_btn]) if __name__ == "__main__": demo.launch(debug=True)