Spaces:
Build error
Build error
update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,146 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
3 |
from transformers import pipeline
|
|
|
|
|
|
|
4 |
|
5 |
-
pipe = pipeline('sentiment-analysis')
|
6 |
-
text = st.text_area('enter some text!')
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from time import sleep
|
3 |
+
from stqdm import stqdm
|
4 |
+
import pandas as pd
|
5 |
from transformers import pipeline
|
6 |
+
import json
|
7 |
+
import spacy
|
8 |
+
import spacy_streamlit
|
9 |
|
|
|
|
|
10 |
|
11 |
+
def draw_all(
|
12 |
+
key,
|
13 |
+
plot=False,
|
14 |
+
):
|
15 |
+
st.write(
|
16 |
+
"""
|
17 |
+
# NLP Web App
|
18 |
+
|
19 |
+
This Natural Language Processing Based Web App can do anything u can imagine with Text. 😱
|
20 |
+
|
21 |
+
This App is built using pretrained transformers which are capable of doing wonders with the Textual data.
|
22 |
+
|
23 |
+
```python
|
24 |
+
# Key Features of this App.
|
25 |
+
1. Advanced Text Summarizer
|
26 |
+
2. Sentiment Analysis
|
27 |
+
3. Question Answering
|
28 |
+
4. Text Completion
|
29 |
+
|
30 |
+
```
|
31 |
+
"""
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
with st.sidebar:
|
37 |
+
draw_all("sidebar")
|
38 |
+
|
39 |
+
|
40 |
+
#main function that holds all the options
|
41 |
+
def main():
|
42 |
+
st.title("NLP IE Web App")
|
43 |
+
menu = ["--Select--","Summarizer",
|
44 |
+
"Sentiment Analysis","Question Answering","Text Completion"]
|
45 |
+
choice = st.sidebar.selectbox("What task would you like to do?", menu)
|
46 |
+
if choice=="--Select--":
|
47 |
+
|
48 |
+
st.write("""
|
49 |
+
|
50 |
+
Welcome to the the Web App of Data Dynamos. As an IE student of the Master of Business Analyitics and Big Data you have the opportunity to
|
51 |
+
do anything with your lectures you like
|
52 |
+
""")
|
53 |
+
|
54 |
+
st.write("""
|
55 |
+
|
56 |
+
Never heard of NLP? No way! Natural Language Processing (NLP) is a computational technique
|
57 |
+
to process human language in all of it's complexity
|
58 |
+
""")
|
59 |
+
|
60 |
+
st.write("""
|
61 |
+
|
62 |
+
NLP is an vital discipline in Artificial Intelligence and keeps growing
|
63 |
+
""")
|
64 |
+
|
65 |
+
|
66 |
+
st.image('banner_image.png')
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
elif choice=="Summarizer":
|
71 |
+
st.subheader("Text Summarization")
|
72 |
+
st.write(" Enter the Text you want to summarize !")
|
73 |
+
raw_text = st.text_area("Your Text","Enter Your Text Here")
|
74 |
+
num_words = st.number_input("Enter Number of Words in Summary")
|
75 |
+
|
76 |
+
if raw_text!="" and num_words is not None:
|
77 |
+
num_words = int(num_words)
|
78 |
+
summarizer = pipeline('summarization')
|
79 |
+
summary = summarizer(raw_text, min_length=num_words,max_length=50)
|
80 |
+
s1 = json.dumps(summary[0])
|
81 |
+
d2 = json.loads(s1)
|
82 |
+
result_summary = d2['summary_text']
|
83 |
+
result_summary = '. '.join(list(map(lambda x: x.strip().capitalize(), result_summary.split('.'))))
|
84 |
+
st.write(f"Here's your Summary : {result_summary}")
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
elif choice=="Sentiment Analysis":
|
89 |
+
st.subheader("Sentiment Analysis")
|
90 |
+
#loading the pipeline
|
91 |
+
sentiment_analysis = pipeline("sentiment-analysis")
|
92 |
+
st.write(" Enter the Text below To find out its Sentiment !")
|
93 |
+
|
94 |
+
raw_text = st.text_area("Your Text","Enter Text Here")
|
95 |
+
if raw_text !="Enter Text Here":
|
96 |
+
result = sentiment_analysis(raw_text)[0]
|
97 |
+
sentiment = result['label']
|
98 |
+
for _ in stqdm(range(50), desc="Please wait a bit. The model is fetching the results !!"):
|
99 |
+
sleep(0.1)
|
100 |
+
if sentiment =="POSITIVE":
|
101 |
+
st.write("""# This text has a Positive Sentiment. 🤗""")
|
102 |
+
elif sentiment =="NEGATIVE":
|
103 |
+
st.write("""# This text has a Negative Sentiment. 😤""")
|
104 |
+
elif sentiment =="NEUTRAL":
|
105 |
+
st.write("""# This text seems Neutral ... 😐""")
|
106 |
+
|
107 |
+
elif choice=="Question Answering":
|
108 |
+
st.subheader("Question Answering")
|
109 |
+
st.write(" Enter the Context and ask the Question to find out the Answer !")
|
110 |
+
question_answering = pipeline("question-answering")
|
111 |
+
|
112 |
+
|
113 |
+
context = st.text_area("Context","Enter the Context Here")
|
114 |
+
|
115 |
+
#This is the text box for the question
|
116 |
+
question = st.text_area("Your Question","Enter your Question Here")
|
117 |
+
|
118 |
+
if context !="Enter Text Here" and question!="Enter your Question Here":
|
119 |
+
#we are passing question and the context
|
120 |
+
result = question_answering(question=question, context=context)
|
121 |
+
#dump the result in json and load it again
|
122 |
+
s1 = json.dumps(result)
|
123 |
+
d2 = json.loads(s1)
|
124 |
+
generated_text = d2['answer']
|
125 |
+
#joining and capalizing by dot
|
126 |
+
generated_text = '. '.join(list(map(lambda x: x.strip().capitalize(), generated_text.split('.'))))
|
127 |
+
st.write(f" Here's your Answer :\n {generated_text}")
|
128 |
+
|
129 |
+
elif choice=="Text Completion":
|
130 |
+
st.subheader("Text Completion")
|
131 |
+
st.write(" Enter the uncomplete Text to complete it automatically using AI !")
|
132 |
+
text_generation = pipeline("text-generation")
|
133 |
+
message = st.text_area("Your Text","Enter the Text to complete")
|
134 |
+
|
135 |
+
|
136 |
+
if message !="Enter the Text to complete":
|
137 |
+
generator = text_generation(message)
|
138 |
+
s1 = json.dumps(generator[0])
|
139 |
+
d2 = json.loads(s1)
|
140 |
+
generated_text = d2['generated_text']
|
141 |
+
generated_text = '. '.join(list(map(lambda x: x.strip().capitalize(), generated_text.split('.'))))
|
142 |
+
st.write(f" Here's your Generate Text :\n {generated_text}")
|
143 |
+
|
144 |
+
#main function to run
|
145 |
+
if __name__ == '__main__':
|
146 |
+
main()
|