Spaces:
Runtime error
Runtime error
File size: 11,637 Bytes
800f395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import sys
sys.path.append("generative-models")
import os, math, torch, cv2
from omegaconf import OmegaConf
from glob import glob
from pathlib import Path
from typing import Optional
import numpy as np
from einops import rearrange, repeat
from PIL import Image
from torchvision.transforms import ToTensor
from torchvision.transforms import functional as TF
from sgm.util import instantiate_from_config
def load_model(config: str, device: str, num_frames: int, num_steps: int):
config = OmegaConf.load(config)
config.model.params.conditioner_config.params.emb_models[0].params.open_clip_embedding_config.params.init_device = device
config.model.params.sampler_config.params.num_steps = num_steps
config.model.params.sampler_config.params.guider_config.params.num_frames = (num_frames)
with torch.device(device):
model = instantiate_from_config(config.model).to(device).eval().requires_grad_(False)
return model
num_frames = 25
num_steps = 30
model_config = "generative-models/scripts/sampling/configs/svd_xt.yaml"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = load_model(model_config, device, num_frames, num_steps)
model.conditioner.cpu()
model.first_stage_model.cpu()
model.model.to(dtype=torch.float16)
torch.cuda.empty_cache()
model = model.requires_grad_(False)
def get_unique_embedder_keys_from_conditioner(conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
def get_batch(keys, value_dict, N, T, device, dtype=None):
batch = {}
batch_uc = {}
for key in keys:
if key == "fps_id":
batch[key] = (
torch.tensor([value_dict["fps_id"]])
.to(device, dtype=dtype)
.repeat(int(math.prod(N)))
)
elif key == "motion_bucket_id":
batch[key] = (
torch.tensor([value_dict["motion_bucket_id"]])
.to(device, dtype=dtype)
.repeat(int(math.prod(N)))
)
elif key == "cond_aug":
batch[key] = repeat(
torch.tensor([value_dict["cond_aug"]]).to(device, dtype=dtype),
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames":
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
elif key == "cond_frames_without_noise":
batch[key] = repeat(
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
)
else:
batch[key] = value_dict[key]
if T is not None:
batch["num_video_frames"] = T
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def sample(
input_path: str = "/content/test_image.png",
resize_image: bool = False,
num_frames: Optional[int] = None,
num_steps: Optional[int] = None,
fps_id: int = 6,
motion_bucket_id: int = 127,
cond_aug: float = 0.02,
seed: int = 23,
decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: Optional[str] = "/content/outputs",
):
"""
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
"""
torch.manual_seed(seed)
path = Path(input_path)
all_img_paths = []
if path.is_file():
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
all_img_paths = [input_path]
else:
raise ValueError("Path is not valid image file.")
elif path.is_dir():
all_img_paths = sorted(
[
f
for f in path.iterdir()
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
]
)
if len(all_img_paths) == 0:
raise ValueError("Folder does not contain any images.")
else:
raise ValueError
all_out_paths = []
for input_img_path in all_img_paths:
with Image.open(input_img_path) as image:
if image.mode == "RGBA":
image = image.convert("RGB")
if resize_image and image.size != (1024, 576):
print(f"Resizing {image.size} to (1024, 576)")
image = TF.resize(TF.resize(image, 1024), (576, 1024))
w, h = image.size
if h % 64 != 0 or w % 64 != 0:
width, height = map(lambda x: x - x % 64, (w, h))
image = image.resize((width, height))
print(
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
)
image = ToTensor()(image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(device)
H, W = image.shape[2:]
assert image.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
if (H, W) != (576, 1024):
print(
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
)
if motion_bucket_id > 255:
print(
"WARNING: High motion bucket! This may lead to suboptimal performance."
)
if fps_id < 5:
print("WARNING: Small fps value! This may lead to suboptimal performance.")
if fps_id > 30:
print("WARNING: Large fps value! This may lead to suboptimal performance.")
value_dict = {}
value_dict["motion_bucket_id"] = motion_bucket_id
value_dict["fps_id"] = fps_id
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = image
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
value_dict["cond_aug"] = cond_aug
# low vram mode
model.conditioner.cpu()
model.first_stage_model.cpu()
torch.cuda.empty_cache()
model.sampler.verbose = True
with torch.no_grad():
with torch.autocast(device):
model.conditioner.to(device)
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
model.conditioner.cpu()
torch.cuda.empty_cache()
# from here, dtype is fp16
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
for k in uc.keys():
uc[k] = uc[k].to(dtype=torch.float16)
c[k] = c[k].to(dtype=torch.float16)
randn = torch.randn(shape, device=device, dtype=torch.float16)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(2, num_frames).to(device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
for k in additional_model_inputs:
if isinstance(additional_model_inputs[k], torch.Tensor):
additional_model_inputs[k] = additional_model_inputs[k].to(dtype=torch.float16)
def denoiser(input, sigma, c):
return model.denoiser(model.model, input, sigma, c, **additional_model_inputs)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
samples_z.to(dtype=model.first_stage_model.dtype)
model.en_and_decode_n_samples_a_time = decoding_t
model.first_stage_model.to(device)
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
model.first_stage_model.cpu()
torch.cuda.empty_cache()
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
writer = cv2.VideoWriter(
video_path,
cv2.VideoWriter_fourcc(*"MP4V"),
fps_id + 1,
(samples.shape[-1], samples.shape[-2]),
)
vid = (
(rearrange(samples, "t c h w -> t h w c") * 255)
.cpu()
.numpy()
.astype(np.uint8)
)
for frame in vid:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
writer.write(frame)
writer.release()
all_out_paths.append(video_path)
return all_out_paths
import gradio as gr
import random
def url2imge(input_path: str)->str:
return input_path
def infer(input_path: str, resize_image: bool, n_frames: int, n_steps: int, seed: str, decoding_t: int) -> str:
if seed == "random":
seed = random.randint(0, 2**32)
seed = int(seed)
output_paths = sample(
input_path=input_path,
resize_image=resize_image,
num_frames=n_frames,
num_steps=n_steps,
fps_id=6,
motion_bucket_id=127,
cond_aug=0.02,
seed=seed,
decoding_t=decoding_t, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device=device,
)
return output_paths[0]
with gr.Blocks() as demo:
with gr.Column():
text = gr.Textbox(label="input image url")
btn2 = gr.Button("url to imge")
image = gr.Image(label="input image", type="filepath")
resize_image = gr.Checkbox(label="resize to optimal size", value=True)
btn = gr.Button("Run")
with gr.Accordion(label="Advanced options", open=False):
n_frames = gr.Number(precision=0, label="number of frames", value=num_frames)
n_steps = gr.Number(precision=0, label="number of steps", value=num_steps)
seed = gr.Text(value="random", label="seed (integer or 'random')",)
decoding_t = gr.Number(precision=0, label="number of frames decoded at a time", value=2)
with gr.Column():
video_out = gr.Video(label="generated video")
examples = [["https://img.technews.tw/wp-content/uploads/2023/08/17150937/zac-durant-_6HzPU9Hyfg-unsplash-800x533.jpg"]]
inputs = [image, resize_image, n_frames, n_steps, seed, decoding_t]
outputs = [video_out]
btn.click(infer, inputs=inputs, outputs=outputs)
btn2.click(url2imge, inputs=text, outputs=image)
gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=infer)
demo.queue().launch(debug=True, share=True, inline=False, show_error=True) |