import gradio as gr import torch from transformers import pipeline pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto") messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, # {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] def random_response(message, history): msg = messages.copy() for m in history: q, a = m msg.append({"role": "user", "content": q}) msg.append({"role": "assistant", "content": a}) msg.append({"role": "user", "content": message}) prompt = pipe.tokenizer.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) output = outputs[0]["generated_text"] messages.append({"role": "assistant", "content": output}) response_start = output.rfind('<|assistant|>') return output[response_start + len('<|assistant|>'):] demo = gr.ChatInterface(random_response) demo.launch()