Spaces:
Runtime error
Runtime error
Tristan Thrush
commited on
Commit
•
bce177f
1
Parent(s):
e91bd7c
added hit-to-huggingface dataset code. cleaned everything up
Browse files- README.md +30 -0
- app.py +52 -20
- collect.py +20 -9
- requirements.txt +2 -1
README.md
CHANGED
@@ -11,3 +11,33 @@ license: bigscience-bloom-rail-1.0
|
|
11 |
---
|
12 |
|
13 |
A basic example of dynamic adversarial data collection with a Gradio app.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
A basic example of dynamic adversarial data collection with a Gradio app.
|
14 |
+
|
15 |
+
*Instructions for someone to use for their own project:*
|
16 |
+
|
17 |
+
**Setting up the Space**
|
18 |
+
1. Clone this repo and deploy it on your own Hugging Face space.
|
19 |
+
2. Add one of your Hugging Face tokens to the secrets for your space, with the
|
20 |
+
name `HF_TOKEN`. Now, create an empty Hugging Face dataset on the hub. Put
|
21 |
+
the url of this dataset in the secrets for your space, with the name
|
22 |
+
`DATASET_REPO_URL`. It can be a private or public dataset. When you run this
|
23 |
+
space on mturk in the following lines, the app will use your token to
|
24 |
+
automatically store new hits to your dataset.
|
25 |
+
|
26 |
+
**Running Data Collection**
|
27 |
+
1. On your local repo that you pulled, create a copy of `config.py.example`,
|
28 |
+
just called `config.py`. Now, put keys from your AWS account in `config.py`.
|
29 |
+
These keys should be for an AWS account that has the
|
30 |
+
AmazonMechanicalTurkFullAccess permission. You also need to
|
31 |
+
create an mturk requestor account associated with your AWS account.
|
32 |
+
2. Run `python collect.py` locally. If you run it with the `--live_mode` flag,
|
33 |
+
it launches HITs on mturk, using the app you deployed on the space as the
|
34 |
+
data collection UI and backend. NOTE: this means that you will need to pay
|
35 |
+
real workers. If you don't use the `--live_mode` flag, then it will run the
|
36 |
+
HITs on mturk sandbox, which is identical to the normal mturk, but just for
|
37 |
+
testing. You can create a worker account and go to the sandbox version to
|
38 |
+
test your HIT.
|
39 |
+
|
40 |
+
**Profit**
|
41 |
+
Now, you should be watching hits come into your Hugging Face dataset
|
42 |
+
automatically!
|
43 |
+
|
app.py
CHANGED
@@ -1,13 +1,24 @@
|
|
1 |
# Basic example for doing model-in-the-loop dynamic adversarial data collection
|
2 |
# using Gradio Blocks.
|
3 |
-
|
4 |
import random
|
5 |
from urllib.parse import parse_qs
|
6 |
|
7 |
import gradio as gr
|
8 |
import requests
|
9 |
from transformers import pipeline
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
pipe = pipeline("sentiment-analysis")
|
12 |
|
13 |
demo = gr.Blocks()
|
@@ -16,7 +27,7 @@ with demo:
|
|
16 |
total_cnt = 2 # How many examples per HIT
|
17 |
dummy = gr.Textbox(visible=False) # dummy for passing assignmentId
|
18 |
|
19 |
-
# We keep track of state as a
|
20 |
state_dict = {"assignmentId": "", "cnt": 0, "fooled": 0, "data": [], "metadata": {}}
|
21 |
state = gr.JSON(state_dict, visible=False)
|
22 |
|
@@ -47,6 +58,9 @@ with demo:
|
|
47 |
toggle_example_submit = gr.update(visible=not done)
|
48 |
new_state_md = f"State: {state['cnt']}/{total_cnt} ({state['fooled']} fooled)"
|
49 |
|
|
|
|
|
|
|
50 |
query = parse_qs(dummy[1:])
|
51 |
state["assignmentId"] = query["assignmentId"][0]
|
52 |
|
@@ -64,33 +78,51 @@ with demo:
|
|
64 |
with gr.Column(visible=False) as final_submit:
|
65 |
submit_hit_button = gr.Button("Submit HIT")
|
66 |
|
67 |
-
#
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
return str(x) + " With assignmentId " + state["assignmentId"] + "\n" + x.text, state, dummy
|
76 |
|
77 |
# Button event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
submit_ex_button.click(
|
79 |
_predict,
|
80 |
inputs=[text_input, label_input, state, dummy],
|
81 |
outputs=[label_output, text_output, state, example_submit, final_submit, state_display, dummy],
|
82 |
-
_js=
|
83 |
)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
submit_hit_button.click(
|
90 |
-
|
91 |
inputs=[state],
|
92 |
-
outputs=
|
93 |
-
_js=
|
94 |
)
|
95 |
|
96 |
-
demo.launch(
|
|
|
1 |
# Basic example for doing model-in-the-loop dynamic adversarial data collection
|
2 |
# using Gradio Blocks.
|
3 |
+
import os
|
4 |
import random
|
5 |
from urllib.parse import parse_qs
|
6 |
|
7 |
import gradio as gr
|
8 |
import requests
|
9 |
from transformers import pipeline
|
10 |
+
from huggingface_hub import Repository
|
11 |
+
|
12 |
+
# These variables are for storing the mturk HITs in a Hugging Face dataset.
|
13 |
+
DATA_FILENAME = "data.jsonl"
|
14 |
+
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
15 |
+
DATASET_REPO_URL = os.environ.get(DATASET_REPO_URL)
|
16 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
+
repo = Repository(
|
18 |
+
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
19 |
+
)
|
20 |
+
|
21 |
+
# Now let's run the app!
|
22 |
pipe = pipeline("sentiment-analysis")
|
23 |
|
24 |
demo = gr.Blocks()
|
|
|
27 |
total_cnt = 2 # How many examples per HIT
|
28 |
dummy = gr.Textbox(visible=False) # dummy for passing assignmentId
|
29 |
|
30 |
+
# We keep track of state as a JSON
|
31 |
state_dict = {"assignmentId": "", "cnt": 0, "fooled": 0, "data": [], "metadata": {}}
|
32 |
state = gr.JSON(state_dict, visible=False)
|
33 |
|
|
|
58 |
toggle_example_submit = gr.update(visible=not done)
|
59 |
new_state_md = f"State: {state['cnt']}/{total_cnt} ({state['fooled']} fooled)"
|
60 |
|
61 |
+
# We need to store the assignmentId in the state before submit_hit_button
|
62 |
+
# is clicked. We can do this here in _predict, which is called before
|
63 |
+
# submit_hit_button is clicked
|
64 |
query = parse_qs(dummy[1:])
|
65 |
state["assignmentId"] = query["assignmentId"][0]
|
66 |
|
|
|
78 |
with gr.Column(visible=False) as final_submit:
|
79 |
submit_hit_button = gr.Button("Submit HIT")
|
80 |
|
81 |
+
# Store the HIT data into a Hugging Face dataset.
|
82 |
+
# The HIT is also stored and logged on mturk when post_hit_js is run below.
|
83 |
+
# This _store_in_huggingface_dataset function just demonstrates how easy it is
|
84 |
+
# to automatically create a Hugging Face dataset from mturk.
|
85 |
+
def _store_in_huggingface_dataset(state, dummy):
|
86 |
+
with open(DATA_FILE, "a") as jsonlfile:
|
87 |
+
jsonlfile.write(json.dumps(state))
|
88 |
+
repo.push_to_hub()
|
|
|
89 |
|
90 |
# Button event handlers
|
91 |
+
get_window_location_search_js = """
|
92 |
+
function(text_input, label_input, state, dummy) {
|
93 |
+
return [text_input, label_input, state, window.location.search];
|
94 |
+
}
|
95 |
+
"""
|
96 |
+
|
97 |
submit_ex_button.click(
|
98 |
_predict,
|
99 |
inputs=[text_input, label_input, state, dummy],
|
100 |
outputs=[label_output, text_output, state, example_submit, final_submit, state_display, dummy],
|
101 |
+
_js=get_window_location_search_js,
|
102 |
)
|
103 |
|
104 |
+
post_hit_js = """
|
105 |
+
function(state) {
|
106 |
+
const form = document.createElement('form');
|
107 |
+
form.action = 'https://workersandbox.mturk.com/mturk/externalSubmit';
|
108 |
+
form.method = 'post';
|
109 |
+
for (const key in state) {
|
110 |
+
const hiddenField = document.createElement('input');
|
111 |
+
hiddenField.type = 'hidden';
|
112 |
+
hiddenField.name = key;
|
113 |
+
hiddenField.value = state[key];
|
114 |
+
form.appendChild(hiddenField)
|
115 |
+
};
|
116 |
+
document.body.appendChild(form);
|
117 |
+
form.submit();
|
118 |
+
}
|
119 |
+
"""
|
120 |
|
121 |
submit_hit_button.click(
|
122 |
+
_store_in_huggingface_dataset,
|
123 |
inputs=[state],
|
124 |
+
outputs=None,
|
125 |
+
_js=post_hit_js,
|
126 |
)
|
127 |
|
128 |
+
demo.launch()
|
collect.py
CHANGED
@@ -5,20 +5,33 @@ import boto3
|
|
5 |
from boto.mturk.question import ExternalQuestion
|
6 |
|
7 |
from config import MTURK_KEY, MTURK_SECRET
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
MTURK_SANDBOX = "https://mturk-requester-sandbox.us-east-1.amazonaws.com"
|
11 |
|
12 |
mturk = boto3.client(
|
13 |
"mturk",
|
14 |
aws_access_key_id=MTURK_KEY,
|
15 |
aws_secret_access_key=MTURK_SECRET,
|
16 |
region_name=MTURK_REGION,
|
17 |
-
endpoint_url=
|
18 |
)
|
19 |
|
20 |
-
#
|
21 |
-
question = ExternalQuestion("https://hf.space/embed/
|
22 |
frame_height=600
|
23 |
)
|
24 |
|
@@ -27,7 +40,7 @@ new_hit = mturk.create_hit(
|
|
27 |
Description="Hello",
|
28 |
Keywords="fool the model",
|
29 |
Reward="0.15",
|
30 |
-
MaxAssignments=
|
31 |
LifetimeInSeconds=172800,
|
32 |
AssignmentDurationInSeconds=600,
|
33 |
AutoApprovalDelayInSeconds=14400,
|
@@ -35,8 +48,6 @@ new_hit = mturk.create_hit(
|
|
35 |
)
|
36 |
|
37 |
print(
|
38 |
-
"
|
39 |
+ new_hit["HIT"]["HITGroupId"]
|
40 |
)
|
41 |
-
|
42 |
-
print("Hit Id:", new_hit["HIT"]["HITId"])
|
|
|
5 |
from boto.mturk.question import ExternalQuestion
|
6 |
|
7 |
from config import MTURK_KEY, MTURK_SECRET
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument("--mturk_region", default="us-east-1", help="The region for mturk (default: us-east-1)")
|
12 |
+
parser.add_argument("--space_name", default="Tristan/dadc", help="Name of the accompanying Hugging Face space (default: Tristan/dadc)")
|
13 |
+
parser.add_argument("--num_assignments", type=int, default=5, help="The number of times that the HIT can be accepted and completed.")
|
14 |
+
parser.add_argument("--live_mode", action="store_true", help="""
|
15 |
+
Whether to run in live mode with real turkers. This will charge your account money.
|
16 |
+
If you don't use this flag, the HITs will be deployed on the sandbox version of mturk,
|
17 |
+
which will not charge your account money.
|
18 |
+
"""
|
19 |
+
)
|
20 |
+
|
21 |
+
args = parser.parse_args()
|
22 |
|
23 |
+
MTURK_URL = f"https://mturk-requester{"" if args.live_mode else "-sandbox"}.{args.mturk_region}.amazonaws.com"
|
|
|
24 |
|
25 |
mturk = boto3.client(
|
26 |
"mturk",
|
27 |
aws_access_key_id=MTURK_KEY,
|
28 |
aws_secret_access_key=MTURK_SECRET,
|
29 |
region_name=MTURK_REGION,
|
30 |
+
endpoint_url=MTURK_URL,
|
31 |
)
|
32 |
|
33 |
+
# This is the URL that makes the space embeddable in an mturk iframe
|
34 |
+
question = ExternalQuestion(f"https://hf.space/embed/{args.space_name}/+?__theme=light",
|
35 |
frame_height=600
|
36 |
)
|
37 |
|
|
|
40 |
Description="Hello",
|
41 |
Keywords="fool the model",
|
42 |
Reward="0.15",
|
43 |
+
MaxAssignments=args.num_assignments,
|
44 |
LifetimeInSeconds=172800,
|
45 |
AssignmentDurationInSeconds=600,
|
46 |
AutoApprovalDelayInSeconds=14400,
|
|
|
48 |
)
|
49 |
|
50 |
print(
|
51 |
+
f"Link: https://worker{"" if args.live_mode else "sandbox"}.mturk.com/mturk/preview?groupId="
|
52 |
+ new_hit["HIT"]["HITGroupId"]
|
53 |
)
|
|
|
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ requests
|
|
2 |
torch
|
3 |
transformers
|
4 |
gradio
|
5 |
-
boto3
|
|
|
|
2 |
torch
|
3 |
transformers
|
4 |
gradio
|
5 |
+
boto3
|
6 |
+
huggingface_hub
|