# import gradio as gr # print("hello") # gr.load("NousResearch/Yarn-Mistral-7b-128k",src="models").launch() # from transformers import pipeline # classifier = pipeline("sentiment-analysis") # def get_class(input): # return classifier("I've been waiting for a HuggingFace course my whole life.") # iface = gr.Interface(fn=get_class, inputs="text", outputs=['text'], title='hello', description='play around') # iface.launch() fsddsf # Use a pipeline as a high-level helper from transformers import pipeline my_pipe = pipeline("text-generation", model="NousResearch/Yarn-Mistral-7b-128k") def get_class_1(input): return my_pipe(input) iface = gr.Interface(fn=get_class_1, inputs="text", outputs=['text'], title='hello', description='LLM') iface.launch()