# import gradio as gr # def greet(name): # return "Hello " + name + "!!" # iface = gr.Interface(fn=greet, inputs="text", outputs="text") # iface.launch() # Importing to fix missing function error import os import random import shutil from pathlib import Path import urllib import numpy as np import pandas as pd from PIL import Image import matplotlib.pyplot as plt import fastai==1.0.61 from fastai.vision import * import gradio as gr # from fastai.vision.all import * import skimage labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Food Classifier" description = "A food classifier trained on the Food 101 dataset with fastai by Phan. Created as a demo for Gradio and HuggingFace Spaces." examples = ['hamburger.jpg'] interpretation='default' enable_queue=True gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()