Spaces:
Runtime error
Runtime error
File size: 5,657 Bytes
def2fa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import pycaret
import streamlit as st
from streamlit_option_menu import option_menu
import PIL
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
with st.sidebar:
image = Image.open('./itaca_logo.png')
st.image(image,use_column_width=True)
page = option_menu(menu_title='Menu',
menu_icon="robot",
options=["Clustering Analysis",
"Anomaly Detection"],
icons=["chat-dots",
"key"],
default_index=0
)
st.title('ITACA Insurance Core AI Module')
if page == "Clustering Analysis":
st.header('Clustering Analysis')
st.write(
"""
"""
)
# import pycaret unsupervised models
from pycaret.clustering import *
# import ClusteringExperiment
from pycaret.clustering import ClusteringExperiment
# Upload the CSV file
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
# Define the unsupervised model
clusteringmodel = ['kmeans', 'ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics', 'birch']
selected_model = st.selectbox("Choose a clustering model", clusteringmodel)
# Define the options for the dropdown list
numclusters = [2, 3, 4, 5, 6]
# selected_clusters = st.selectbox("Choose a number of clusters", numclusters)
selected_clusters = st.slider("Choose a number of clusters", min_value=2, max_value=10, value=4)
# Read and display the CSV file
if uploaded_file is not None:
try:
delimiter = ','
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
except ValueError:
delimiter = '|'
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
s = setup(insurance_claims, session_id = 123, log_experiment='mlflow', experiment_name='fraud_detection')
exp_clustering = ClusteringExperiment()
# init setup on exp
exp_clustering.setup(insurance_claims, session_id = 123)
if st.button("Prediction"):
with st.spinner("Analyzing..."):
# train kmeans model
cluster_model = create_model(selected_model, num_clusters = selected_clusters)
cluster_model_2 = assign_model(cluster_model)
cluster_model_2
all_metrics = get_metrics()
all_metrics
cluster_results = pull()
cluster_results
# plot pca cluster plot
plot_model(cluster_model, plot = 'cluster', display_format = 'streamlit')
if selected_model != 'ap':
plot_model(cluster_model, plot = 'tsne', display_format = 'streamlit')
if selected_model not in ('ap', 'meanshift', 'dbscan', 'optics'):
plot_model(cluster_model, plot = 'elbow', display_format = 'streamlit')
if selected_model not in ('ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics'):
plot_model(cluster_model, plot = 'silhouette', display_format = 'streamlit')
if selected_model not in ('ap', 'sc', 'hclust', 'dbscan', 'optics', 'birch'):
plot_model(cluster_model, plot = 'distance', display_format = 'streamlit')
if selected_model != 'ap':
plot_model(cluster_model, plot = 'distribution', display_format = 'streamlit')
elif page == "Anomaly Detection":
st.header('Anomaly Detection')
st.write(
"""
"""
)
# import pycaret anomaly
from pycaret.anomaly import *
# import AnomalyExperiment
from pycaret.anomaly import AnomalyExperiment
# Upload the CSV file
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
# Define the unsupervised model
anomalymodel = ['abod', 'cluster', 'cof', 'iforest', 'histogram', 'knn', 'lof', 'svm', 'pca', 'mcd', 'sod', 'sos']
selected_model = st.selectbox("Choose an anomaly model", anomalymodel)
# Read and display the CSV file
if uploaded_file is not None:
try:
delimiter = ','
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
except ValueError:
delimiter = '|'
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
s = setup(insurance_claims, session_id = 123)
exp_anomaly = AnomalyExperiment()
# init setup on exp
exp_anomaly.setup(insurance_claims, session_id = 123)
if st.button("Prediction"):
with st.spinner("Analyzing..."):
# train model
anomaly_model = create_model(selected_model)
anomaly_model_2 = assign_model(anomaly_model)
anomaly_model_2
anomaly_results = pull()
anomaly_results
# plot
plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')
|