dperales's picture
Create app_copy.py
def2fa3
raw
history blame
5.66 kB
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import pycaret
import streamlit as st
from streamlit_option_menu import option_menu
import PIL
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
with st.sidebar:
image = Image.open('./itaca_logo.png')
st.image(image,use_column_width=True)
page = option_menu(menu_title='Menu',
menu_icon="robot",
options=["Clustering Analysis",
"Anomaly Detection"],
icons=["chat-dots",
"key"],
default_index=0
)
st.title('ITACA Insurance Core AI Module')
if page == "Clustering Analysis":
st.header('Clustering Analysis')
st.write(
"""
"""
)
# import pycaret unsupervised models
from pycaret.clustering import *
# import ClusteringExperiment
from pycaret.clustering import ClusteringExperiment
# Upload the CSV file
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
# Define the unsupervised model
clusteringmodel = ['kmeans', 'ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics', 'birch']
selected_model = st.selectbox("Choose a clustering model", clusteringmodel)
# Define the options for the dropdown list
numclusters = [2, 3, 4, 5, 6]
# selected_clusters = st.selectbox("Choose a number of clusters", numclusters)
selected_clusters = st.slider("Choose a number of clusters", min_value=2, max_value=10, value=4)
# Read and display the CSV file
if uploaded_file is not None:
try:
delimiter = ','
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
except ValueError:
delimiter = '|'
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
s = setup(insurance_claims, session_id = 123, log_experiment='mlflow', experiment_name='fraud_detection')
exp_clustering = ClusteringExperiment()
# init setup on exp
exp_clustering.setup(insurance_claims, session_id = 123)
if st.button("Prediction"):
with st.spinner("Analyzing..."):
# train kmeans model
cluster_model = create_model(selected_model, num_clusters = selected_clusters)
cluster_model_2 = assign_model(cluster_model)
cluster_model_2
all_metrics = get_metrics()
all_metrics
cluster_results = pull()
cluster_results
# plot pca cluster plot
plot_model(cluster_model, plot = 'cluster', display_format = 'streamlit')
if selected_model != 'ap':
plot_model(cluster_model, plot = 'tsne', display_format = 'streamlit')
if selected_model not in ('ap', 'meanshift', 'dbscan', 'optics'):
plot_model(cluster_model, plot = 'elbow', display_format = 'streamlit')
if selected_model not in ('ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics'):
plot_model(cluster_model, plot = 'silhouette', display_format = 'streamlit')
if selected_model not in ('ap', 'sc', 'hclust', 'dbscan', 'optics', 'birch'):
plot_model(cluster_model, plot = 'distance', display_format = 'streamlit')
if selected_model != 'ap':
plot_model(cluster_model, plot = 'distribution', display_format = 'streamlit')
elif page == "Anomaly Detection":
st.header('Anomaly Detection')
st.write(
"""
"""
)
# import pycaret anomaly
from pycaret.anomaly import *
# import AnomalyExperiment
from pycaret.anomaly import AnomalyExperiment
# Upload the CSV file
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
# Define the unsupervised model
anomalymodel = ['abod', 'cluster', 'cof', 'iforest', 'histogram', 'knn', 'lof', 'svm', 'pca', 'mcd', 'sod', 'sos']
selected_model = st.selectbox("Choose an anomaly model", anomalymodel)
# Read and display the CSV file
if uploaded_file is not None:
try:
delimiter = ','
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
except ValueError:
delimiter = '|'
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
s = setup(insurance_claims, session_id = 123)
exp_anomaly = AnomalyExperiment()
# init setup on exp
exp_anomaly.setup(insurance_claims, session_id = 123)
if st.button("Prediction"):
with st.spinner("Analyzing..."):
# train model
anomaly_model = create_model(selected_model)
anomaly_model_2 = assign_model(anomaly_model)
anomaly_model_2
anomaly_results = pull()
anomaly_results
# plot
plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')