Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import matplotlib as mpl
|
6 |
import pycaret
|
@@ -21,8 +22,8 @@ hide_streamlit_style = """
|
|
21 |
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
22 |
|
23 |
with st.sidebar:
|
24 |
-
image = Image.open('
|
25 |
-
st.image(image,use_column_width=True)
|
26 |
page = option_menu(menu_title='Menu',
|
27 |
menu_icon="robot",
|
28 |
options=["Clustering Analysis",
|
@@ -32,6 +33,24 @@ with st.sidebar:
|
|
32 |
default_index=0
|
33 |
)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
st.title('ITACA Insurance Core AI Module')
|
36 |
|
37 |
if page == "Clustering Analysis":
|
@@ -52,10 +71,9 @@ if page == "Clustering Analysis":
|
|
52 |
all_files = os.listdir(directory)
|
53 |
# Filter files to only include CSV files
|
54 |
csv_files = [file for file in all_files if file.endswith(".csv")]
|
55 |
-
|
56 |
# Select a CSV file from the list
|
57 |
selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)
|
58 |
-
|
59 |
# Upload the CSV file
|
60 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
61 |
|
@@ -63,11 +81,6 @@ if page == "Clustering Analysis":
|
|
63 |
clusteringmodel = ['kmeans', 'ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics', 'birch']
|
64 |
selected_model = st.selectbox("Choose a clustering model", clusteringmodel)
|
65 |
|
66 |
-
# Define the options for the dropdown list
|
67 |
-
numclusters = [2, 3, 4, 5, 6]
|
68 |
-
# selected_clusters = st.selectbox("Choose a number of clusters", numclusters)
|
69 |
-
selected_clusters = st.slider("Choose a number of clusters", min_value=2, max_value=10, value=4)
|
70 |
-
|
71 |
# Read and display the CSV file
|
72 |
if selected_csv != "None" or uploaded_file is not None:
|
73 |
if uploaded_file:
|
@@ -80,23 +93,51 @@ if page == "Clustering Analysis":
|
|
80 |
else:
|
81 |
insurance_claims = pd.read_csv(selected_csv)
|
82 |
|
83 |
-
|
84 |
|
85 |
-
|
|
|
86 |
|
87 |
-
#
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
if st.button("Prediction"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
with st.spinner("Analyzing..."):
|
92 |
# train kmeans model
|
93 |
cluster_model = create_model(selected_model, num_clusters = selected_clusters)
|
94 |
|
95 |
cluster_model_2 = assign_model(cluster_model)
|
|
|
|
|
|
|
|
|
|
|
96 |
cluster_model_2
|
97 |
|
98 |
-
all_metrics = get_metrics()
|
99 |
-
all_metrics
|
100 |
|
101 |
cluster_results = pull()
|
102 |
cluster_results
|
@@ -137,7 +178,6 @@ elif page == "Anomaly Detection":
|
|
137 |
all_files = os.listdir(directory)
|
138 |
# Filter files to only include CSV files
|
139 |
csv_files = [file for file in all_files if file.endswith(".csv")]
|
140 |
-
|
141 |
# Select a CSV file from the list
|
142 |
selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)
|
143 |
|
@@ -159,15 +199,24 @@ elif page == "Anomaly Detection":
|
|
159 |
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
|
160 |
else:
|
161 |
insurance_claims = pd.read_csv(selected_csv)
|
162 |
-
|
163 |
-
s = setup(insurance_claims, session_id = 123)
|
164 |
-
|
165 |
-
exp_anomaly = AnomalyExperiment()
|
166 |
|
167 |
-
|
168 |
-
|
169 |
|
170 |
if st.button("Prediction"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
with st.spinner("Analyzing..."):
|
172 |
# train model
|
173 |
anomaly_model = create_model(selected_model)
|
@@ -180,5 +229,4 @@ elif page == "Anomaly Detection":
|
|
180 |
|
181 |
# plot
|
182 |
plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
|
183 |
-
plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')
|
184 |
-
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
import matplotlib.pyplot as plt
|
6 |
import matplotlib as mpl
|
7 |
import pycaret
|
|
|
22 |
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
23 |
|
24 |
with st.sidebar:
|
25 |
+
image = Image.open('itaca_logo.png')
|
26 |
+
st.image(image, width=150) #,use_column_width=True)
|
27 |
page = option_menu(menu_title='Menu',
|
28 |
menu_icon="robot",
|
29 |
options=["Clustering Analysis",
|
|
|
33 |
default_index=0
|
34 |
)
|
35 |
|
36 |
+
# Additional section below the option menu
|
37 |
+
# st.markdown("---") # Add a separator line
|
38 |
+
st.header("Settings")
|
39 |
+
|
40 |
+
# Define the options for the dropdown list
|
41 |
+
numclusters = [2, 3, 4, 5, 6]
|
42 |
+
# selected_clusters = st.selectbox("Choose a number of clusters", numclusters)
|
43 |
+
selected_clusters = st.slider("Choose a number of clusters", min_value=2, max_value=10, value=4)
|
44 |
+
|
45 |
+
p_remove_multicollinearity = st.checkbox("Remove Multicollinearity", value=False)
|
46 |
+
p_multicollinearity_threshold = st.slider("Choose multicollinearity thresholds", min_value=0.0, max_value=1.0, value=0.9)
|
47 |
+
# p_remove_outliers = st.checkbox("Remove Outliers", value=False)
|
48 |
+
# p_outliers_method = st.selectbox ("Choose an Outlier Method", ["iforest", "ee", "lof"])
|
49 |
+
p_transformation = st.checkbox("Choose Power Transform", value = False)
|
50 |
+
p_normalize = st.checkbox("Choose Normalize", value = False)
|
51 |
+
p_pca = st.checkbox("Choose PCA", value = False)
|
52 |
+
p_pca_method = st.selectbox ("Choose a PCA Method", ["linear", "kernel", "incremental"])
|
53 |
+
|
54 |
st.title('ITACA Insurance Core AI Module')
|
55 |
|
56 |
if page == "Clustering Analysis":
|
|
|
71 |
all_files = os.listdir(directory)
|
72 |
# Filter files to only include CSV files
|
73 |
csv_files = [file for file in all_files if file.endswith(".csv")]
|
|
|
74 |
# Select a CSV file from the list
|
75 |
selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)
|
76 |
+
|
77 |
# Upload the CSV file
|
78 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
79 |
|
|
|
81 |
clusteringmodel = ['kmeans', 'ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics', 'birch']
|
82 |
selected_model = st.selectbox("Choose a clustering model", clusteringmodel)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
84 |
# Read and display the CSV file
|
85 |
if selected_csv != "None" or uploaded_file is not None:
|
86 |
if uploaded_file:
|
|
|
93 |
else:
|
94 |
insurance_claims = pd.read_csv(selected_csv)
|
95 |
|
96 |
+
insurance_claims.describe().T
|
97 |
|
98 |
+
cat_col = insurance_claims.select_dtypes(include=['object']).columns
|
99 |
+
num_col = insurance_claims.select_dtypes(exclude=['object']).columns
|
100 |
|
101 |
+
# insurance_claims[num_col].hist(bins=15, figsize=(20, 15), layout=(5, 4))
|
102 |
+
# Calculate the correlation matrix
|
103 |
+
corr_matrix = insurance_claims[num_col].corr()
|
104 |
+
# Create a Matplotlib figure
|
105 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
106 |
+
# Create a heatmap using seaborn
|
107 |
+
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
|
108 |
+
# Set the title for the heatmap
|
109 |
+
ax.set_title('Correlation Heatmap')
|
110 |
+
# Display the heatmap in Streamlit
|
111 |
+
st.pyplot(fig)
|
112 |
+
|
113 |
+
all_columns = insurance_claims.columns.tolist()
|
114 |
+
selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)
|
115 |
|
116 |
if st.button("Prediction"):
|
117 |
+
insurance_claims = insurance_claims[selected_columns].copy()
|
118 |
+
|
119 |
+
s = setup(insurance_claims, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
|
120 |
+
# remove_outliers=p_remove_outliers, outliers_method=p_outliers_method,
|
121 |
+
transformation=p_transformation,
|
122 |
+
normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)
|
123 |
+
exp_clustering = ClusteringExperiment()
|
124 |
+
# init setup on exp
|
125 |
+
exp_clustering.setup(insurance_claims, session_id = 123)
|
126 |
+
|
127 |
with st.spinner("Analyzing..."):
|
128 |
# train kmeans model
|
129 |
cluster_model = create_model(selected_model, num_clusters = selected_clusters)
|
130 |
|
131 |
cluster_model_2 = assign_model(cluster_model)
|
132 |
+
# Calculate summary statistics for each cluster
|
133 |
+
cluster_summary = cluster_model_2.groupby('Cluster').agg(['count', 'mean', 'median', 'min', 'max',
|
134 |
+
'std', 'var', 'sum', ('quantile_25', lambda x: x.quantile(0.25)),
|
135 |
+
('quantile_75', lambda x: x.quantile(0.75)), 'skew'])
|
136 |
+
cluster_summary
|
137 |
cluster_model_2
|
138 |
|
139 |
+
# all_metrics = get_metrics()
|
140 |
+
# all_metrics
|
141 |
|
142 |
cluster_results = pull()
|
143 |
cluster_results
|
|
|
178 |
all_files = os.listdir(directory)
|
179 |
# Filter files to only include CSV files
|
180 |
csv_files = [file for file in all_files if file.endswith(".csv")]
|
|
|
181 |
# Select a CSV file from the list
|
182 |
selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)
|
183 |
|
|
|
199 |
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
|
200 |
else:
|
201 |
insurance_claims = pd.read_csv(selected_csv)
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
all_columns = insurance_claims.columns.tolist()
|
204 |
+
selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)
|
205 |
|
206 |
if st.button("Prediction"):
|
207 |
+
insurance_claims = insurance_claims[selected_columns].copy()
|
208 |
+
|
209 |
+
# s = setup(insurance_claims, session_id = 123)
|
210 |
+
|
211 |
+
s = setup(insurance_claims, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
|
212 |
+
# remove_outliers=p_remove_outliers, outliers_method=p_outliers_method,
|
213 |
+
transformation=p_transformation,
|
214 |
+
normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)
|
215 |
+
|
216 |
+
exp_anomaly = AnomalyExperiment()
|
217 |
+
# init setup on exp
|
218 |
+
exp_anomaly.setup(insurance_claims, session_id = 123)
|
219 |
+
|
220 |
with st.spinner("Analyzing..."):
|
221 |
# train model
|
222 |
anomaly_model = create_model(selected_model)
|
|
|
229 |
|
230 |
# plot
|
231 |
plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
|
232 |
+
plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')
|
|