dperales commited on
Commit
b9cd793
·
1 Parent(s): 4d17a95

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -233,23 +233,23 @@ def main():
233
  insurance_claims = pd.read_csv(selected_csv)
234
 
235
  num_rows = int(insurance_claims.shape[0]*int(num_lines)/100)
236
- insurance_claims = insurance_claims.head(num_rows)
237
  st.write("Rows to be processed: " + str(num_rows))
238
-
239
- all_columns = insurance_claims.columns.tolist()
240
- selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)
241
 
 
 
 
 
242
  if st.button("Prediction"):
243
- insurance_claims = insurance_claims[selected_columns].copy()
244
-
245
- s = setup(insurance_claims, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
246
  # remove_outliers=p_remove_outliers, outliers_method=p_outliers_method,
247
  transformation=p_transformation,
248
  normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)
249
 
250
  exp_anomaly = AnomalyExperiment()
251
  # init setup on exp
252
- exp_anomaly.setup(insurance_claims, session_id = 123)
253
 
254
  with st.spinner("Analyzing..."):
255
  # train model
 
233
  insurance_claims = pd.read_csv(selected_csv)
234
 
235
  num_rows = int(insurance_claims.shape[0]*int(num_lines)/100)
236
+ insurance_claims_reduced = insurance_claims.head(num_rows)
237
  st.write("Rows to be processed: " + str(num_rows))
 
 
 
238
 
239
+ all_columns = insurance_claims_reduced.columns.tolist()
240
+ selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)
241
+ insurance_claims_reduced = insurance_claims_reduced[selected_columns].copy()
242
+
243
  if st.button("Prediction"):
244
+
245
+ s = setup(insurance_claims_reduced, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
 
246
  # remove_outliers=p_remove_outliers, outliers_method=p_outliers_method,
247
  transformation=p_transformation,
248
  normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)
249
 
250
  exp_anomaly = AnomalyExperiment()
251
  # init setup on exp
252
+ exp_anomaly.setup(insurance_claims_reduced, session_id = 123)
253
 
254
  with st.spinner("Analyzing..."):
255
  # train model