dperales commited on
Commit
d6b7dee
1 Parent(s): 9d239ac

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +158 -0
app.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tensorflow as tf
3
+ import tensorflow_hub as hub
4
+ # Load compressed models from tensorflow_hub
5
+ os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
6
+
7
+ import matplotlib.pyplot as plt
8
+ import matplotlib as mpl
9
+
10
+ # For drawing onto the image.
11
+ import numpy as np
12
+ from tensorflow.python.ops.numpy_ops import np_config
13
+ np_config.enable_numpy_behavior()
14
+ from PIL import Image
15
+ from PIL import ImageColor
16
+ from PIL import ImageDraw
17
+ from PIL import ImageFont
18
+ import time
19
+
20
+ import streamlit as st
21
+
22
+ # For measuring the inference time.
23
+ import time
24
+
25
+ def run_detector(detector, path):
26
+ # img = load_img_2(path)
27
+ img = path
28
+
29
+ converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...]
30
+
31
+ start_time = time.time()
32
+ result = detector(converted_img)
33
+ end_time = time.time()
34
+
35
+ result = {key:value.numpy() for key,value in result.items()}
36
+
37
+ # print("Found %d objects." % len(result["detection_scores"]))
38
+ # print("Inference time: ", end_time-start_time)
39
+
40
+ primer = format(result["detection_class_entities"][0]) + ' ' + format(round(result["detection_scores"][0]*100)) + '%'
41
+
42
+ image_with_boxes = draw_boxes(
43
+ img, result["detection_boxes"],
44
+ result["detection_class_entities"], result["detection_scores"])
45
+
46
+ display_image(image_with_boxes)
47
+ return image_with_boxes, primer
48
+
49
+ def display_image(image):
50
+ fig = plt.figure(figsize=(20, 15))
51
+ plt.grid(False)
52
+ plt.imshow(image)
53
+
54
+ def draw_bounding_box_on_image(image,
55
+ ymin,
56
+ xmin,
57
+ ymax,
58
+ xmax,
59
+ color,
60
+ font,
61
+ thickness=4,
62
+ display_str_list=()):
63
+ """Adds a bounding box to an image."""
64
+ draw = ImageDraw.Draw(image)
65
+ im_width, im_height = image.size
66
+ (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
67
+ ymin * im_height, ymax * im_height)
68
+ draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
69
+ (left, top)],
70
+ width=thickness,
71
+ fill=color)
72
+
73
+ # If the total height of the display strings added to the top of the bounding
74
+ # box exceeds the top of the image, stack the strings below the bounding box
75
+ # instead of above.
76
+ display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
77
+ # Each display_str has a top and bottom margin of 0.05x.
78
+ total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
79
+
80
+ if top > total_display_str_height:
81
+ text_bottom = top
82
+ else:
83
+ text_bottom = top + total_display_str_height
84
+ # Reverse list and print from bottom to top.
85
+ for display_str in display_str_list[::-1]:
86
+ text_width, text_height = font.getsize(display_str)
87
+ margin = np.ceil(0.05 * text_height)
88
+ draw.rectangle([(left, text_bottom - text_height - 2 * margin),
89
+ (left + text_width, text_bottom)],
90
+ fill=color)
91
+ draw.text((left + margin, text_bottom - text_height - margin),
92
+ display_str,
93
+ fill="black",
94
+ font=font)
95
+ text_bottom -= text_height - 2 * margin
96
+
97
+ def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.4):
98
+ """Overlay labeled boxes on an image with formatted scores and label names."""
99
+ colors = list(ImageColor.colormap.values())
100
+
101
+ try:
102
+ font = ImageFont.truetype("./Roboto-Light.ttf", 24)
103
+
104
+ except IOError:
105
+ print("Font not found, using default font.")
106
+ font = ImageFont.load_default()
107
+
108
+ for i in range(min(boxes.shape[0], max_boxes)):
109
+ if scores[i] >= min_score:
110
+ ymin, xmin, ymax, xmax = tuple(boxes[i])
111
+ display_str = "{}: {}%".format(class_names[i].decode("ascii"),
112
+ int(100 * scores[i]))
113
+ color = colors[hash(class_names[i]) % len(colors)]
114
+ image_pil = Image.fromarray(np.uint8(image)).convert("RGB")
115
+ draw_bounding_box_on_image(
116
+ image_pil,
117
+ ymin,
118
+ xmin,
119
+ ymax,
120
+ xmax,
121
+ color,
122
+ font,
123
+ display_str_list=[display_str])
124
+ np.copyto(image, np.array(image_pil))
125
+ return image
126
+
127
+ def main():
128
+ image = Image.open('./itaca_logo_2.png')
129
+ # image_hospital = Image.open('./ust.png')
130
+ st.image(image,use_column_width=False)
131
+ # st.sidebar.info('This app is created to detect objects in a picture')
132
+ # st.sidebar.image(image_hospital)
133
+ # st.sidebar.success('https://www.ust.com')
134
+ st.title("Object Detector :sunglasses:")
135
+
136
+ # filename = file_selector(FILE_PATH)
137
+
138
+ img_file_buffer = st.file_uploader("Carga una imagen", type=["png", "jpg", "jpeg"])
139
+ if img_file_buffer is not None:
140
+ image = np.array(Image.open(img_file_buffer))
141
+ # st.image(image, caption="Imagen", use_column_width=True)
142
+
143
+ module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1"
144
+ # module_handle = "https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1"
145
+
146
+ detector = hub.load(module_handle).signatures['default']
147
+
148
+ if st.button("Prediction"):
149
+ # img, primero = run_detector(detector, filename)
150
+ img, primero = run_detector(detector, image)
151
+ # primero = run_detector(detector, image)
152
+ st.success('The first image detected is: ' + primero)
153
+ st.image(img, caption="Imagen", use_column_width=True)
154
+
155
+
156
+
157
+ if __name__ == '__main__':
158
+ main()