import os import pycaret from pycaret.datasets import get_data # import pycaret clustering from pycaret.clustering import * # import pycaret anomaly from pycaret.anomaly import * # import ClusteringExperiment from pycaret.clustering import ClusteringExperiment # import AnomalyExperiment from pycaret.anomaly import AnomalyExperiment import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import streamlit as st import plotly.graph_objs as go # For measuring the inference time. import time def main(): data = get_data('jewellery') s = setup(data, session_id = 123) exp_clustering = ClusteringExperiment() exp_anomaly = AnomalyExperiment() # init setup on exp exp_clustering.setup(data, session_id = 123) exp_anomaly.setup(data, session_id = 123) # train kmeans model kmeans = create_model('kmeans') iforest = create_model('iforest') # kmeans_cluster = assign_model(kmeans) # kmeans_cluster iforest_anomalies = assign_model(iforest) iforest_anomalies if st.button("Prediction"): # plot pca cluster plot # plot_model(kmeans, plot = 'cluster', display_format = 'streamlit') plot_model(iforest, plot = 'tsne', display_format = 'streamlit') if __name__ == '__main__': main()