# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. # %% auto 0 __all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] # %% app.ipynb 0 import gradio as gr import pandas as pd from huggingface_hub import list_models from diffusers import StableDiffusionPipeline submissions_list = list_models(filter=["dreambooth-hackathon", category], full=True) spaces_pipeline_load = [submission.id for submission in submissions_list ] for ids in spaces_pipeline_load: mydict[ids] = StableDiffusionPipeline.from_pretrained(ids) #('ashiqabdulkhader/shiba-dog') #f"pipeline{ids.split('//')[-1]}" = StableDiffusionPipeline.from_pretrained(ids) #('ashiqabdulkhader/shiba-dog') #pipeline = StableDiffusionPipeline.from_pretrained("ashiqabdulkhader/shiba-dog") #('pharma/sugar-glider') #image = pipeline().images[0] #image #https://huggingface.co/ashiqabdulkhader/shiba-dog def filter_species(species): return gr.Dropdown.update(choices=species_map[species], value=species_map[species][1]), gr.update(visible=True) # %% app.ipynb 1 def make_clickable_demo(model_name, prompt): #link=None): #if link is None: # link = "https://huggingface.co/" + model_name # Remove user from model name prompt = "a photo of " + ' '.join(model_name.split('/')[-1].split['-']) + str(prompt) return gr.Button.update() def make_clickable_model(model_name, link=None): if link is None: link = "https://huggingface.co/" + model_name #adding functionality for demo prompt = "a photo of " + ' '.join(model_name.split('/')[-1].split['-']) + str(prompt) pipeline = StableDiffusionPipeline.from_pretrained(model_name) #("ashiqabdulkhader/shiba-dog") #('pharma/sugar-glider') image_demo = pipeline().images[0] # Remove user from model name return image_out.Update(value=image_demo, label=model_name.split("/")[-1]) #f'{model_name.split("/")[-1]}' def make_clickable_user(user_id): link = "https://huggingface.co/" + user_id return f'{user_id}' # %% app.ipynb 2 def get_submissions(category): submissions = list_models(filter=["dreambooth-hackathon", category], full=True) leaderboard_models = [] for submission in submissions: # user, model, likes user_id = submission.id.split("/")[0] leaderboard_models.append( ( make_clickable_user(user_id), make_clickable_model(submission.id), submission.likes, ) ) df = pd.DataFrame(data=leaderboard_models, columns=["User", "Model", "Likes"]) df.sort_values(by=["Likes"], ascending=False, inplace=True) df.insert(0, "Rank", list(range(1, len(df) + 1))) return df # %% app.ipynb 3 block = gr.Blocks() with block: gr.Markdown( """# The DreamBooth Hackathon Leaderboard Welcome to the leaderboard for the DreamBooth Hackathon! This is a community event where particpants **personalise a Stable Diffusion model** by fine-tuning it with a powerful technique called [_DreamBooth_](https://arxiv.org/abs/2208.12242). This technique allows one to implant a subject (e.g. your pet or favourite dish) into the output domain of the model such that it can be synthesized with a _unique identifier_ in the prompt. This competition is composed of 5 _themes_, where each theme will collect models belong to one of the categories shown in the tabs below. We'll be **giving out prizes to the top 3 most liked models per theme**, and you're encouraged to submit as many models as you want! For details on how to participate, check out the hackathon's guide [here](https://github.com/huggingface/diffusion-models-class/blob/main/hackathon/README.md). """ ) with gr.Row(): prompt_in = gr.Textbox(label="Type in a Prompt. This will be suffixed to 'a photo of ', so prompt accordingly -") #button_in = gr.Button(label = "Generate Image using this model") with gr.Tabs(): with gr.TabItem("Animal 🐨"): with gr.Row(): animal_data = gr.components.Dataframe( type="pandas", datatype=["number", "markdown", "markdown", "number"] ) with gr.Row(): data_run = gr.Button("Refresh") data_run.click( get_submissions, inputs=gr.Variable("animal"), outputs=animal_data ) with gr.TabItem("Science 🔬"): with gr.Row(): science_data = gr.components.Dataframe( type="pandas", datatype=["number", "markdown", "markdown", "number"] ) with gr.Row(): data_run = gr.Button("Refresh") data_run.click( get_submissions, inputs=gr.Variable("science"), outputs=science_data ) with gr.TabItem("Food 🍔"): with gr.Row(): food_data = gr.components.Dataframe( type="pandas", datatype=["number", "markdown", "markdown", "number"] ) with gr.Row(): data_run = gr.Button("Refresh") data_run.click( get_submissions, inputs=gr.Variable("food"), outputs=food_data ) with gr.TabItem("Landscape 🏔"): with gr.Row(): landscape_data = gr.components.Dataframe( type="pandas", datatype=["number", "markdown", "markdown", "number"] ) with gr.Row(): data_run = gr.Button("Refresh") data_run.click( get_submissions, inputs=gr.Variable("landscape"), outputs=landscape_data, ) with gr.TabItem("Wilcard 🔥"): with gr.Row(): wildcard_data = gr.components.Dataframe( type="pandas", datatype=["number", "markdown", "markdown", "number"] ) with gr.Row(): data_run = gr.Button("Refresh") data_run.click( get_submissions, inputs=gr.Variable("wildcard"), outputs=wildcard_data, ) with gr.Row() as your_model_demo : image_out = gr.Image() button_in.click(make_clickable_demo, prompt_in, your_model_demo) block.load(get_submissions, inputs=gr.Variable("animal"), outputs=animal_data) block.load(get_submissions, inputs=gr.Variable("science"), outputs=science_data) block.load(get_submissions, inputs=gr.Variable("food"), outputs=food_data) block.load(get_submissions, inputs=gr.Variable("landscape"), outputs=landscape_data) block.load(get_submissions, inputs=gr.Variable("wildcard"), outputs=wildcard_data) block.launch()