Spaces:
Runtime error
Runtime error
Commit
·
f467a89
1
Parent(s):
29d2d55
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,32 @@ from PIL import Image
|
|
10 |
import re
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
class Prodia:
|
15 |
def __init__(self, api_key, base=None):
|
@@ -17,19 +43,19 @@ class Prodia:
|
|
17 |
self.headers = {
|
18 |
"X-Prodia-Key": api_key
|
19 |
}
|
20 |
-
|
21 |
def generate(self, params):
|
22 |
response = self._post(f"{self.base}/sd/generate", params)
|
23 |
return response.json()
|
24 |
-
|
25 |
def transform(self, params):
|
26 |
response = self._post(f"{self.base}/sd/transform", params)
|
27 |
return response.json()
|
28 |
-
|
29 |
def controlnet(self, params):
|
30 |
response = self._post(f"{self.base}/sd/controlnet", params)
|
31 |
return response.json()
|
32 |
-
|
33 |
def get_job(self, job_id):
|
34 |
response = self._get(f"{self.base}/job/{job_id}")
|
35 |
return response.json()
|
@@ -76,7 +102,7 @@ def image_to_base64(image):
|
|
76 |
# Convert the image to bytes
|
77 |
buffered = BytesIO()
|
78 |
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
79 |
-
|
80 |
# Encode the bytes to base64
|
81 |
img_str = base64.b64encode(buffered.getvalue())
|
82 |
|
@@ -100,11 +126,11 @@ def get_data(text):
|
|
100 |
'negative_prompt': r'Negative prompt: (.*)',
|
101 |
'steps': r'Steps: (\d+),',
|
102 |
'seed': r'Seed: (\d+),',
|
103 |
-
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
104 |
'model': r'Model:\s*([^\s,]+)',
|
105 |
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
106 |
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
107 |
-
|
108 |
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
|
109 |
match = re.search(patterns[key], text)
|
110 |
if match:
|
@@ -120,18 +146,20 @@ def get_data(text):
|
|
120 |
results['h'] = None
|
121 |
return results
|
122 |
|
|
|
123 |
def send_to_img2img_def(image):
|
124 |
return image
|
125 |
|
126 |
-
def send_to_txt2img(image):
|
127 |
|
|
|
128 |
result = {tabs: gr.update(selected="t2i")}
|
129 |
|
130 |
try:
|
131 |
text = image.info['parameters']
|
132 |
data = get_data(text)
|
133 |
result[prompt] = gr.update(value=data['prompt'])
|
134 |
-
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[
|
|
|
135 |
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
|
136 |
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
|
137 |
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
|
@@ -206,59 +234,60 @@ css = """
|
|
206 |
with gr.Blocks(css=css) as demo:
|
207 |
with gr.Row():
|
208 |
with gr.Column(scale=6):
|
209 |
-
model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True,
|
210 |
-
|
211 |
-
with gr.Column(scale=1):
|
212 |
-
gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")
|
213 |
|
214 |
with gr.Tabs() as tabs:
|
215 |
with gr.Tab("txt2img", id='t2i'):
|
216 |
with gr.Row():
|
217 |
with gr.Column(scale=6, min_width=600):
|
218 |
-
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
219 |
-
|
|
|
|
|
220 |
with gr.Column():
|
221 |
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
222 |
-
|
223 |
with gr.Row():
|
224 |
with gr.Column(scale=3):
|
225 |
with gr.Tab("Generation"):
|
226 |
with gr.Row():
|
227 |
with gr.Column(scale=1):
|
228 |
-
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method",
|
229 |
-
|
|
|
230 |
with gr.Column(scale=1):
|
231 |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
232 |
-
|
233 |
with gr.Row():
|
234 |
with gr.Column(scale=1):
|
235 |
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
236 |
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
237 |
-
|
238 |
with gr.Column(scale=1):
|
239 |
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
240 |
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
241 |
-
|
242 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=
|
243 |
seed = gr.Number(label="Seed", value=-1)
|
244 |
|
245 |
with gr.Column(scale=2):
|
246 |
-
image_output = gr.Image(show_label=False, type="filepath")
|
247 |
send_to_img2img = gr.Button(value="Send to img2img")
|
248 |
|
249 |
-
|
250 |
-
|
251 |
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
|
252 |
seed], outputs=image_output, concurrency_limit=64)
|
253 |
-
|
254 |
with gr.Tab("img2img", id='i2i'):
|
255 |
with gr.Row():
|
256 |
with gr.Column(scale=6, min_width=600):
|
257 |
-
i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
258 |
-
|
|
|
|
|
259 |
with gr.Column():
|
260 |
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
261 |
-
|
262 |
with gr.Row():
|
263 |
with gr.Column(scale=3):
|
264 |
with gr.Tab("Generation"):
|
@@ -266,8 +295,9 @@ with gr.Blocks(css=css) as demo:
|
|
266 |
|
267 |
with gr.Row():
|
268 |
with gr.Column(scale=1):
|
269 |
-
i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method",
|
270 |
-
|
|
|
271 |
with gr.Column(scale=1):
|
272 |
i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
273 |
|
@@ -275,32 +305,33 @@ with gr.Blocks(css=css) as demo:
|
|
275 |
with gr.Column(scale=1):
|
276 |
i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
277 |
i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
278 |
-
|
279 |
with gr.Column(scale=1):
|
280 |
i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
281 |
i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
282 |
-
|
283 |
i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
|
284 |
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
|
285 |
i2i_seed = gr.Number(label="Seed", value=-1)
|
286 |
|
287 |
with gr.Column(scale=2):
|
288 |
-
i2i_image_output = gr.Image(show_label=False, type="filepath")
|
289 |
-
|
290 |
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
|
291 |
model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
|
292 |
i2i_seed], outputs=i2i_image_output, concurrency_limit=64)
|
293 |
send_to_img2img.click(send_to_img2img_def, inputs=image_output, outputs=i2i_image_input)
|
|
|
294 |
with gr.Tab("PNG Info"):
|
295 |
def plaintext_to_html(text, classname=None):
|
296 |
content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
|
297 |
-
|
298 |
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
|
299 |
-
|
300 |
-
|
301 |
def get_exif_data(image):
|
302 |
items = image.info
|
303 |
-
|
304 |
info = ''
|
305 |
for key, text in items.items():
|
306 |
info += f"""
|
@@ -308,26 +339,66 @@ with gr.Blocks(css=css) as demo:
|
|
308 |
<p><b>{plaintext_to_html(str(key))}</b></p>
|
309 |
<p>{plaintext_to_html(str(text))}</p>
|
310 |
</div>
|
311 |
-
""".strip()+"\n"
|
312 |
-
|
313 |
if len(info) == 0:
|
314 |
message = "Nothing found in the image."
|
315 |
info = f"<div><p>{message}<p></div>"
|
316 |
-
|
317 |
return info
|
318 |
-
|
|
|
319 |
with gr.Row():
|
320 |
with gr.Column():
|
321 |
image_input = gr.Image(type="pil")
|
322 |
-
|
323 |
with gr.Column():
|
324 |
exif_output = gr.HTML(label="EXIF Data")
|
325 |
send_to_txt2img_btn = gr.Button("Send to txt2img")
|
326 |
-
|
327 |
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
|
328 |
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
|
329 |
steps, seed, model, sampler,
|
330 |
width, height, cfg_scale],
|
331 |
concurrency_limit=64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
|
333 |
demo.queue(max_size=80, api_open=False).launch(max_threads=256, show_api=False)
|
|
|
10 |
import re
|
11 |
|
12 |
|
13 |
+
def query(payload, model):
|
14 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
16 |
+
url = "https://api-inference.huggingface.co/models/"
|
17 |
+
API_URL = f"{url}{model}"
|
18 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
19 |
+
return response.content
|
20 |
+
|
21 |
+
def hf_inference(prompt, negative, model, steps, sampler, guidance, width, height, seed):
|
22 |
+
image_bytes = query(payload={
|
23 |
+
"inputs": f"{prompt}",
|
24 |
+
"parameters": {
|
25 |
+
"negative_prompt": f"{negative}",
|
26 |
+
"num_inference_steps": steps,
|
27 |
+
"guidance_scale": guidance,
|
28 |
+
"width": width, "height": height,
|
29 |
+
"seed": seed,
|
30 |
+
},
|
31 |
+
}, model=model)
|
32 |
+
image = Image.open(io.BytesIO(image_bytes))
|
33 |
+
return image
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
|
40 |
class Prodia:
|
41 |
def __init__(self, api_key, base=None):
|
|
|
43 |
self.headers = {
|
44 |
"X-Prodia-Key": api_key
|
45 |
}
|
46 |
+
|
47 |
def generate(self, params):
|
48 |
response = self._post(f"{self.base}/sd/generate", params)
|
49 |
return response.json()
|
50 |
+
|
51 |
def transform(self, params):
|
52 |
response = self._post(f"{self.base}/sd/transform", params)
|
53 |
return response.json()
|
54 |
+
|
55 |
def controlnet(self, params):
|
56 |
response = self._post(f"{self.base}/sd/controlnet", params)
|
57 |
return response.json()
|
58 |
+
|
59 |
def get_job(self, job_id):
|
60 |
response = self._get(f"{self.base}/job/{job_id}")
|
61 |
return response.json()
|
|
|
102 |
# Convert the image to bytes
|
103 |
buffered = BytesIO()
|
104 |
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
105 |
+
|
106 |
# Encode the bytes to base64
|
107 |
img_str = base64.b64encode(buffered.getvalue())
|
108 |
|
|
|
126 |
'negative_prompt': r'Negative prompt: (.*)',
|
127 |
'steps': r'Steps: (\d+),',
|
128 |
'seed': r'Seed: (\d+),',
|
129 |
+
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
130 |
'model': r'Model:\s*([^\s,]+)',
|
131 |
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
132 |
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
133 |
+
}
|
134 |
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
|
135 |
match = re.search(patterns[key], text)
|
136 |
if match:
|
|
|
146 |
results['h'] = None
|
147 |
return results
|
148 |
|
149 |
+
|
150 |
def send_to_img2img_def(image):
|
151 |
return image
|
152 |
|
|
|
153 |
|
154 |
+
def send_to_txt2img(image):
|
155 |
result = {tabs: gr.update(selected="t2i")}
|
156 |
|
157 |
try:
|
158 |
text = image.info['parameters']
|
159 |
data = get_data(text)
|
160 |
result[prompt] = gr.update(value=data['prompt'])
|
161 |
+
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[
|
162 |
+
'negative_prompt'] is not None else gr.update()
|
163 |
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
|
164 |
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
|
165 |
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
|
|
|
234 |
with gr.Blocks(css=css) as demo:
|
235 |
with gr.Row():
|
236 |
with gr.Column(scale=6):
|
237 |
+
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True,
|
238 |
+
label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
|
|
|
|
|
239 |
|
240 |
with gr.Tabs() as tabs:
|
241 |
with gr.Tab("txt2img", id='t2i'):
|
242 |
with gr.Row():
|
243 |
with gr.Column(scale=6, min_width=600):
|
244 |
+
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
245 |
+
placeholder="Prompt", show_label=False, lines=3)
|
246 |
+
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
|
247 |
+
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
|
248 |
with gr.Column():
|
249 |
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
250 |
+
|
251 |
with gr.Row():
|
252 |
with gr.Column(scale=3):
|
253 |
with gr.Tab("Generation"):
|
254 |
with gr.Row():
|
255 |
with gr.Column(scale=1):
|
256 |
+
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method",
|
257 |
+
choices=prodia_client.list_samplers())
|
258 |
+
|
259 |
with gr.Column(scale=1):
|
260 |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
261 |
+
|
262 |
with gr.Row():
|
263 |
with gr.Column(scale=1):
|
264 |
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
265 |
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
266 |
+
|
267 |
with gr.Column(scale=1):
|
268 |
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
269 |
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
270 |
+
|
271 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=8, step=1)
|
272 |
seed = gr.Number(label="Seed", value=-1)
|
273 |
|
274 |
with gr.Column(scale=2):
|
275 |
+
image_output = gr.Image(show_label=False, type="filepath", interactive=False)
|
276 |
send_to_img2img = gr.Button(value="Send to img2img")
|
277 |
|
|
|
|
|
278 |
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
|
279 |
seed], outputs=image_output, concurrency_limit=64)
|
280 |
+
|
281 |
with gr.Tab("img2img", id='i2i'):
|
282 |
with gr.Row():
|
283 |
with gr.Column(scale=6, min_width=600):
|
284 |
+
i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
285 |
+
placeholder="Prompt", show_label=False, lines=3)
|
286 |
+
i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
|
287 |
+
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
|
288 |
with gr.Column():
|
289 |
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
290 |
+
|
291 |
with gr.Row():
|
292 |
with gr.Column(scale=3):
|
293 |
with gr.Tab("Generation"):
|
|
|
295 |
|
296 |
with gr.Row():
|
297 |
with gr.Column(scale=1):
|
298 |
+
i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method",
|
299 |
+
choices=prodia_client.list_samplers())
|
300 |
+
|
301 |
with gr.Column(scale=1):
|
302 |
i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
303 |
|
|
|
305 |
with gr.Column(scale=1):
|
306 |
i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
307 |
i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
308 |
+
|
309 |
with gr.Column(scale=1):
|
310 |
i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
311 |
i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
312 |
+
|
313 |
i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
|
314 |
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
|
315 |
i2i_seed = gr.Number(label="Seed", value=-1)
|
316 |
|
317 |
with gr.Column(scale=2):
|
318 |
+
i2i_image_output = gr.Image(show_label=False, type="filepath", interactive=False)
|
319 |
+
|
320 |
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
|
321 |
model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
|
322 |
i2i_seed], outputs=i2i_image_output, concurrency_limit=64)
|
323 |
send_to_img2img.click(send_to_img2img_def, inputs=image_output, outputs=i2i_image_input)
|
324 |
+
|
325 |
with gr.Tab("PNG Info"):
|
326 |
def plaintext_to_html(text, classname=None):
|
327 |
content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
|
328 |
+
|
329 |
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
|
330 |
+
|
331 |
+
|
332 |
def get_exif_data(image):
|
333 |
items = image.info
|
334 |
+
|
335 |
info = ''
|
336 |
for key, text in items.items():
|
337 |
info += f"""
|
|
|
339 |
<p><b>{plaintext_to_html(str(key))}</b></p>
|
340 |
<p>{plaintext_to_html(str(text))}</p>
|
341 |
</div>
|
342 |
+
""".strip() + "\n"
|
343 |
+
|
344 |
if len(info) == 0:
|
345 |
message = "Nothing found in the image."
|
346 |
info = f"<div><p>{message}<p></div>"
|
347 |
+
|
348 |
return info
|
349 |
+
|
350 |
+
|
351 |
with gr.Row():
|
352 |
with gr.Column():
|
353 |
image_input = gr.Image(type="pil")
|
354 |
+
|
355 |
with gr.Column():
|
356 |
exif_output = gr.HTML(label="EXIF Data")
|
357 |
send_to_txt2img_btn = gr.Button("Send to txt2img")
|
358 |
+
|
359 |
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
|
360 |
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
|
361 |
steps, seed, model, sampler,
|
362 |
width, height, cfg_scale],
|
363 |
concurrency_limit=64)
|
364 |
+
with gr.Tab("HuggingFace Inference"):
|
365 |
+
with gr.Row():
|
366 |
+
hf_model = gr.Dropdown(label="HuggingFace checkpoint", choices=["runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "dataautogpt3/OpenDalleV1.1", "CompVis/stable-diffusion-v1-4", "playgroundai/playground-v2-1024px-aesthetic", "prompthero/openjourney", "openskyml/dreamdrop-v1", "SG161222/Realistic_Vision_V1.4", "digiplay/AbsoluteReality_v1.8.1", "openskyml/dalle-3-xl", "Lykon/dreamshaper-7", "Pclanglais/Mickey-1928"], value="runwayml/stable-diffusion-v1-5", allow_custom_value=False, interactive=True)
|
367 |
+
with gr.Row():
|
368 |
+
with gr.Column(scale=6, min_width=600):
|
369 |
+
hf_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
370 |
+
placeholder="Prompt", show_label=False, lines=3)
|
371 |
+
hd_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
|
372 |
+
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
|
373 |
+
with gr.Column():
|
374 |
+
hf_text_button = gr.Button("Generate with HF", variant='primary', elem_id="generate")
|
375 |
+
|
376 |
+
with gr.Row():
|
377 |
+
with gr.Column(scale=3):
|
378 |
+
with gr.Tab("Generation"):
|
379 |
+
with gr.Row():
|
380 |
+
|
381 |
+
with gr.Column(scale=1):
|
382 |
+
hf_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
383 |
+
|
384 |
+
with gr.Row():
|
385 |
+
with gr.Column(scale=1):
|
386 |
+
hf_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
387 |
+
hf_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
388 |
+
|
389 |
+
with gr.Column(scale=1):
|
390 |
+
hf_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
391 |
+
hf_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
392 |
+
|
393 |
+
hf_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=8, step=1)
|
394 |
+
hf_seed = gr.Number(label="Seed", value=-1)
|
395 |
+
|
396 |
+
with gr.Column(scale=2):
|
397 |
+
hf_image_output = gr.Image(show_label=False, type="filepath", interactive=False)
|
398 |
+
#hf_send_to_img2img = gr.Button(value="Send to img2img")
|
399 |
+
|
400 |
+
hf_text_button.click(hf_inference, inputs=[hf_prompt, hf_negative_prompt, hf_model, hf_steps, hf_sampler, hf_cfg_scale, hf_width, hf_height,
|
401 |
+
hf_seed], outputs=hf_image_output, concurrency_limit=64)
|
402 |
+
|
403 |
|
404 |
demo.queue(max_size=80, api_open=False).launch(max_threads=256, show_api=False)
|