import gradio as gr import requests import time import json import base64 import os from io import BytesIO import io import html import PIL from PIL import Image import re def query(payload, model): HF_TOKEN = os.getenv("HF_TOKEN") headers = {"Authorization": f"Bearer {HF_TOKEN}"} url = "https://api-inference.huggingface.co/models/" API_URL = f"{url}{model}" response = requests.post(API_URL, headers=headers, json=payload) return response.content def hf_inference(prompt, negative, model, steps, sampler, guidance, width, height, seed, progress=gr.Progress()): try: progress(0, desc="Starting") images=[] time.sleep(2.5) progress(0.05) progress(0.25, desc="Generating") image_bytes = query(payload={ "inputs": f"{prompt}", "parameters": { "negative_prompt": f"{negative}", "num_inference_steps": steps, "guidance_scale": guidance, "width": width, "height": height, "seed": seed, }, }, model=model) progress(0.75, desc="Opening image") time.sleep(1) image = Image.open(io.BytesIO(image_bytes)) images.append(image) progress(0.99, desc="Sending image") time.sleep(0.5) return images except PIL.UnidentifiedImageError: gr.Warning("This model is not loaded now. Try others models.") class Prodia: def __init__(self, api_key, base=None): self.base = base or "https://api.prodia.com/v1" self.headers = { "X-Prodia-Key": api_key } def generate(self, params): response = self._post(f"{self.base}/sd/generate", params) return response.json() def transform(self, params): response = self._post(f"{self.base}/sd/transform", params) return response.json() def controlnet(self, params): response = self._post(f"{self.base}/sd/controlnet", params) return response.json() def get_job(self, job_id): response = self._get(f"{self.base}/job/{job_id}") return response.json() def wait(self, job): job_result = job while job_result['status'] not in ['succeeded', 'failed']: time.sleep(0.25) job_result = self.get_job(job['job']) return job_result def list_models(self): response = self._get(f"{self.base}/sd/models") return response.json() def list_samplers(self): response = self._get(f"{self.base}/sd/samplers") return response.json() def _post(self, url, params): headers = { **self.headers, "Content-Type": "application/json" } response = requests.post(url, headers=headers, data=json.dumps(params)) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def _get(self, url): response = requests.get(url, headers=self.headers) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def image_to_base64(image): # Convert the image to bytes buffered = BytesIO() image.save(buffered, format="PNG") # You can change format to PNG if needed # Encode the bytes to base64 img_str = base64.b64encode(buffered.getvalue()) return img_str.decode('utf-8') # Convert bytes to string def remove_id_and_ext(text): text = re.sub(r'\[.*\]$', '', text) extension = text[-12:].strip() if extension == "safetensors": text = text[:-13] elif extension == "ckpt": text = text[:-4] return text def get_data(text): results = {} patterns = { 'prompt': r'(.*)', 'negative_prompt': r'Negative prompt: (.*)', 'steps': r'Steps: (\d+),', 'seed': r'Seed: (\d+),', 'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)', 'model': r'Model:\s*([^\s,]+)', 'cfg_scale': r'CFG scale:\s*([\d\.]+)', 'size': r'Size:\s*([0-9]+x[0-9]+)' } for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']: match = re.search(patterns[key], text) if match: results[key] = match.group(1) else: results[key] = None if results['size'] is not None: w, h = results['size'].split("x") results['w'] = w results['h'] = h else: results['w'] = None results['h'] = None return results def send_to_img2img_def(images): return images def send_to_txt2img(image): result = {tabs: gr.update(selected="t2i")} try: text = image.info['parameters'] data = get_data(text) result[prompt] = gr.update(value=data['prompt']) result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[ 'negative_prompt'] is not None else gr.update() result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update() result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update() result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update() result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update() result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update() result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update() if model in model_names: result[model] = gr.update(value=model_names[model]) else: result[model] = gr.update() return result except Exception as e: print(e) return result prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY")) model_list = prodia_client.list_models() model_names = {} for model_name in model_list: name_without_ext = remove_id_and_ext(model_name) model_names[name_without_ext] = model_name def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, progress=gr.Progress()): progress(0, desc="Starting") time.sleep(2.5) progress(0.25, desc="Generating") result = prodia_client.generate({ "prompt": prompt, "negative_prompt": negative_prompt, "model": model, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "width": width, "height": height, "seed": seed }) progress(0.75, desc="Opening image") job = prodia_client.wait(result) progress(0.99, desc="Sending image") return [job["imageUrl"]], job["imageUrl"] def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, progress=gr.Progress()): progress(0, desc="Starting") time.sleep(1.5) progress(0.10, desc="Uploading input image") time.sleep(1.5) progress(0.25, desc="Generating") result = prodia_client.transform({ "imageData": image_to_base64(input_image), "denoising_strength": denoising, "prompt": prompt, "negative_prompt": negative_prompt, "model": model, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "width": width, "height": height, "seed": seed }) progress(0.75, desc="Opening image") job = prodia_client.wait(result) progress(0.99, desc="Sending image") time.sleep(0.5) return [job["imageUrl"]], job["imageUrl"] css = """ #generate { height: 100%; } """ with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(scale=6): model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models()) with gr.Tabs() as tabs: with gr.Tab("txt2img", id='t2i'): with gr.Row(): with gr.Column(scale=6, min_width=600): prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3) negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation") with gr.Column(): text_button = gr.Button("Generate", variant='primary', elem_id="generate") with gr.Row(): with gr.Column(scale=3): with gr.Tab("Generation"): with gr.Row(): with gr.Column(scale=1): sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers()) with gr.Column(scale=1): steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1) with gr.Row(): with gr.Column(scale=1): width = gr.Slider(label="Width", maximum=1024, value=512, step=8) height = gr.Slider(label="Height", maximum=1024, value=512, step=8) with gr.Column(scale=1): batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) batch_count = gr.Slider(label="Batch Count", maximum=1, value=1) cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=8, step=1) seed = gr.Number(label="Seed", value=-1) with gr.Column(scale=2): image_output = gr.Gallery(show_label=False, rows=2) send_to_img2img = gr.Button(value="Send OUTPUT IMAGE to img2img") send_to_png = gr.Button(value="Send OUTPUT IMAGE to PNG Info") past_url = gr.Textbox(visible=False, interactive=False) text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=[image_output, past_url], concurrency_limit=64) with gr.Tab("img2img", id='i2i'): with gr.Row(): with gr.Column(scale=6, min_width=600): i2i_prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3) i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation") with gr.Column(): i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate") with gr.Row(): with gr.Column(scale=3): with gr.Tab("Generation"): i2i_image_input = gr.Image(type="pil", interactive=True) with gr.Row(): with gr.Column(scale=1): i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers()) with gr.Column(scale=1): i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1) with gr.Row(): with gr.Column(scale=1): i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8) i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8) with gr.Column(scale=1): i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1) i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1) i2i_seed = gr.Number(label="Seed", value=-1) with gr.Column(scale=2): i2i_image_output = gr.Gallery(show_label=False, rows=2) send_to_png_i2i = gr.Button(value="Send INPUT IMAGE to PNG Info") i2i_past_url = gr.Textbox(visible=False, interactive=False) i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt, model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height, i2i_seed], outputs=[i2i_image_output, i2i_past_url], concurrency_limit=64) send_to_img2img.click(send_to_img2img_def, inputs=past_url, outputs=i2i_image_input) with gr.Tab("PNG Info"): def plaintext_to_html(text, classname=None): content = "
\n".join(html.escape(x) for x in text.split('\n')) return f"

{content}

" if classname else f"

{content}

" def get_exif_data(path): image = Image.open(path) items = image.info info = '' for key, text in items.items(): info += f"""

{plaintext_to_html(str(key))}

{plaintext_to_html(str(text))}

""".strip() + "\n" if len(info) == 0: message = "Nothing found in the image." info = f"

{message}

" return info with gr.Row(): with gr.Column(): image_input = gr.Image(type="filepath", interactive=True) png_button = gr.Button("Get Info") with gr.Row(): with gr.Column(): exif_output = gr.HTML(label="EXIF Data") send_to_txt2img_btn = gr.Button("Send PARAMETRS to txt2img") send_to_img2img_png = gr.Button("Send IMAGE to img2img") image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output) png_button.click(get_exif_data, inputs=[image_input], outputs=exif_output) send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt, steps, seed, model, sampler, width, height, cfg_scale], concurrency_limit=64) send_to_png.click(send_to_img2img_def, inputs=past_url, outputs=image_input) send_to_img2img_png.click(send_to_img2img_def, inputs=past_url, outputs=i2i_image_input) send_to_png_i2i.click(send_to_img2img_def, inputs=i2i_past_url, outputs=image_input) with gr.Tab("HuggingFace Inference"): with gr.Row(): gr.Markdown("Add your model from HF.co, enter model ID.") hf_model = gr.Dropdown(label="HuggingFace checkpoint", choices=["runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "dataautogpt3/OpenDalleV1.1", "CompVis/stable-diffusion-v1-4", "playgroundai/playground-v2-1024px-aesthetic", "prompthero/openjourney", "openskyml/dreamdrop-v1", "SG161222/Realistic_Vision_V1.4", "digiplay/AbsoluteReality_v1.8.1", "openskyml/dalle-3-xl", "Lykon/dreamshaper-7", "Pclanglais/Mickey-1928"], value="runwayml/stable-diffusion-v1-5", allow_custom_value=True, interactive=True) with gr.Row(): with gr.Column(scale=6, min_width=600): hf_prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3) hf_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation") with gr.Column(): hf_text_button = gr.Button("Generate with HF", variant='primary', elem_id="generate") with gr.Row(): with gr.Column(scale=3): with gr.Tab("Generation"): with gr.Row(): with gr.Column(scale=1): hf_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1) with gr.Row(): with gr.Column(scale=1): hf_width = gr.Slider(label="Width", maximum=1024, value=512, step=8) hf_height = gr.Slider(label="Height", maximum=1024, value=512, step=8) with gr.Column(scale=1): hf_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) hf_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1) hf_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=8, step=1) hf_seed = gr.Number(label="Seed", value=-1) with gr.Column(scale=2): hf_image_output = gr.Gallery(show_label=False, preview=True, columns=4, allow_preview=True) #hf_send_to_img2img = gr.Button(value="Send to img2img") hf_text_button.click(hf_inference, inputs=[hf_prompt, hf_negative_prompt, hf_model, hf_steps, sampler, hf_cfg_scale, hf_width, hf_height, hf_seed], outputs=hf_image_output, concurrency_limit=64) with gr.Tab("BLIP"): with gr.Tab("Base"): gr.load("models/Salesforce/blip-image-captioning-base", title="BLIP-base") with gr.Tab("Large"): gr.load("models/Salesforce/blip-image-captioning-large", title="BLIP-large") with gr.Tab("Classification"): gr.load("models/google/vit-base-patch16-224", title="ViT Classification") #with gr.Tab("Segmentation"): # gr.load("models/mattmdjaga/segformer_b2_clothes", title="SegFormer Segmentation") with gr.Tab("Visual Question Answering"): gr.load("models/dandelin/vilt-b32-finetuned-vqa", title="ViLT VQA") demo.queue(max_size=80, api_open=False).launch(max_threads=256, show_api=False)