File size: 13,975 Bytes
063372b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import abc
from typing import Optional

import cv2
import torch
import numpy as np
from loguru import logger

from iopaint.helper import (
    boxes_from_mask,
    resize_max_size,
    pad_img_to_modulo,
    switch_mps_device,
)
from iopaint.schema import InpaintRequest, HDStrategy, SDSampler
from .helper.g_diffuser_bot import expand_image
from .utils import get_scheduler


class InpaintModel:
    name = "base"
    min_size: Optional[int] = None
    pad_mod = 8
    pad_to_square = False
    is_erase_model = False

    def __init__(self, device, **kwargs):
        """

        Args:
            device:
        """
        device = switch_mps_device(self.name, device)
        self.device = device
        self.init_model(device, **kwargs)

    @abc.abstractmethod
    def init_model(self, device, **kwargs):
        ...

    @staticmethod
    @abc.abstractmethod
    def is_downloaded() -> bool:
        return False

    @abc.abstractmethod
    def forward(self, image, mask, config: InpaintRequest):
        """Input images and output images have same size
        images: [H, W, C] RGB
        masks: [H, W, 1] 255 为 masks 区域
        return: BGR IMAGE
        """
        ...

    @staticmethod
    def download():
        ...

    def _pad_forward(self, image, mask, config: InpaintRequest):
        origin_height, origin_width = image.shape[:2]
        pad_image = pad_img_to_modulo(
            image, mod=self.pad_mod, square=self.pad_to_square, min_size=self.min_size
        )
        pad_mask = pad_img_to_modulo(
            mask, mod=self.pad_mod, square=self.pad_to_square, min_size=self.min_size
        )

        # logger.info(f"final forward pad size: {pad_image.shape}")

        image, mask = self.forward_pre_process(image, mask, config)

        result = self.forward(pad_image, pad_mask, config)
        result = result[0:origin_height, 0:origin_width, :]

        result, image, mask = self.forward_post_process(result, image, mask, config)

        if config.sd_keep_unmasked_area:
            mask = mask[:, :, np.newaxis]
            result = result * (mask / 255) + image[:, :, ::-1] * (1 - (mask / 255))
        return result

    def forward_pre_process(self, image, mask, config):
        return image, mask

    def forward_post_process(self, result, image, mask, config):
        return result, image, mask

    @torch.no_grad()
    def __call__(self, image, mask, config: InpaintRequest):
        """
        images: [H, W, C] RGB, not normalized
        masks: [H, W]
        return: BGR IMAGE
        """
        inpaint_result = None
        # logger.info(f"hd_strategy: {config.hd_strategy}")
        if config.hd_strategy == HDStrategy.CROP:
            if max(image.shape) > config.hd_strategy_crop_trigger_size:
                logger.info(f"Run crop strategy")
                boxes = boxes_from_mask(mask)
                crop_result = []
                for box in boxes:
                    crop_image, crop_box = self._run_box(image, mask, box, config)
                    crop_result.append((crop_image, crop_box))

                inpaint_result = image[:, :, ::-1]
                for crop_image, crop_box in crop_result:
                    x1, y1, x2, y2 = crop_box
                    inpaint_result[y1:y2, x1:x2, :] = crop_image

        elif config.hd_strategy == HDStrategy.RESIZE:
            if max(image.shape) > config.hd_strategy_resize_limit:
                origin_size = image.shape[:2]
                downsize_image = resize_max_size(
                    image, size_limit=config.hd_strategy_resize_limit
                )
                downsize_mask = resize_max_size(
                    mask, size_limit=config.hd_strategy_resize_limit
                )

                logger.info(
                    f"Run resize strategy, origin size: {image.shape} forward size: {downsize_image.shape}"
                )
                inpaint_result = self._pad_forward(
                    downsize_image, downsize_mask, config
                )

                # only paste masked area result
                inpaint_result = cv2.resize(
                    inpaint_result,
                    (origin_size[1], origin_size[0]),
                    interpolation=cv2.INTER_CUBIC,
                )
                original_pixel_indices = mask < 127
                inpaint_result[original_pixel_indices] = image[:, :, ::-1][
                    original_pixel_indices
                ]

        if inpaint_result is None:
            inpaint_result = self._pad_forward(image, mask, config)

        return inpaint_result

    def _crop_box(self, image, mask, box, config: InpaintRequest):
        """

        Args:
            image: [H, W, C] RGB
            mask: [H, W, 1]
            box: [left,top,right,bottom]

        Returns:
            BGR IMAGE, (l, r, r, b)
        """
        box_h = box[3] - box[1]
        box_w = box[2] - box[0]
        cx = (box[0] + box[2]) // 2
        cy = (box[1] + box[3]) // 2
        img_h, img_w = image.shape[:2]

        w = box_w + config.hd_strategy_crop_margin * 2
        h = box_h + config.hd_strategy_crop_margin * 2

        _l = cx - w // 2
        _r = cx + w // 2
        _t = cy - h // 2
        _b = cy + h // 2

        l = max(_l, 0)
        r = min(_r, img_w)
        t = max(_t, 0)
        b = min(_b, img_h)

        # try to get more context when crop around image edge
        if _l < 0:
            r += abs(_l)
        if _r > img_w:
            l -= _r - img_w
        if _t < 0:
            b += abs(_t)
        if _b > img_h:
            t -= _b - img_h

        l = max(l, 0)
        r = min(r, img_w)
        t = max(t, 0)
        b = min(b, img_h)

        crop_img = image[t:b, l:r, :]
        crop_mask = mask[t:b, l:r]

        # logger.info(f"box size: ({box_h},{box_w}) crop size: {crop_img.shape}")

        return crop_img, crop_mask, [l, t, r, b]

    def _calculate_cdf(self, histogram):
        cdf = histogram.cumsum()
        normalized_cdf = cdf / float(cdf.max())
        return normalized_cdf

    def _calculate_lookup(self, source_cdf, reference_cdf):
        lookup_table = np.zeros(256)
        lookup_val = 0
        for source_index, source_val in enumerate(source_cdf):
            for reference_index, reference_val in enumerate(reference_cdf):
                if reference_val >= source_val:
                    lookup_val = reference_index
                    break
            lookup_table[source_index] = lookup_val
        return lookup_table

    def _match_histograms(self, source, reference, mask):
        transformed_channels = []
        if len(mask.shape) == 3:
            mask = mask[:, :, -1]

        for channel in range(source.shape[-1]):
            source_channel = source[:, :, channel]
            reference_channel = reference[:, :, channel]

            # only calculate histograms for non-masked parts
            source_histogram, _ = np.histogram(source_channel[mask == 0], 256, [0, 256])
            reference_histogram, _ = np.histogram(
                reference_channel[mask == 0], 256, [0, 256]
            )

            source_cdf = self._calculate_cdf(source_histogram)
            reference_cdf = self._calculate_cdf(reference_histogram)

            lookup = self._calculate_lookup(source_cdf, reference_cdf)

            transformed_channels.append(cv2.LUT(source_channel, lookup))

        result = cv2.merge(transformed_channels)
        result = cv2.convertScaleAbs(result)

        return result

    def _apply_cropper(self, image, mask, config: InpaintRequest):
        img_h, img_w = image.shape[:2]
        l, t, w, h = (
            config.croper_x,
            config.croper_y,
            config.croper_width,
            config.croper_height,
        )
        r = l + w
        b = t + h

        l = max(l, 0)
        r = min(r, img_w)
        t = max(t, 0)
        b = min(b, img_h)

        crop_img = image[t:b, l:r, :]
        crop_mask = mask[t:b, l:r]
        return crop_img, crop_mask, (l, t, r, b)

    def _run_box(self, image, mask, box, config: InpaintRequest):
        """

        Args:
            image: [H, W, C] RGB
            mask: [H, W, 1]
            box: [left,top,right,bottom]

        Returns:
            BGR IMAGE
        """
        crop_img, crop_mask, [l, t, r, b] = self._crop_box(image, mask, box, config)

        return self._pad_forward(crop_img, crop_mask, config), [l, t, r, b]


class DiffusionInpaintModel(InpaintModel):
    def __init__(self, device, **kwargs):
        self.model_info = kwargs["model_info"]
        self.model_id_or_path = self.model_info.path
        super().__init__(device, **kwargs)

    @torch.no_grad()
    def __call__(self, image, mask, config: InpaintRequest):
        """
        images: [H, W, C] RGB, not normalized
        masks: [H, W]
        return: BGR IMAGE
        """
        # boxes = boxes_from_mask(mask)
        if config.use_croper:
            crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
            crop_image = self._scaled_pad_forward(crop_img, crop_mask, config)
            inpaint_result = image[:, :, ::-1]
            inpaint_result[t:b, l:r, :] = crop_image
        elif config.use_extender:
            inpaint_result = self._do_outpainting(image, config)
        else:
            inpaint_result = self._scaled_pad_forward(image, mask, config)

        return inpaint_result

    def _do_outpainting(self, image, config: InpaintRequest):
        # cropper 和 image 在同一个坐标系下,croper_x/y 可能为负数
        # 从 image 中 crop 出 outpainting 区域
        image_h, image_w = image.shape[:2]
        cropper_l = config.extender_x
        cropper_t = config.extender_y
        cropper_r = config.extender_x + config.extender_width
        cropper_b = config.extender_y + config.extender_height
        image_l = 0
        image_t = 0
        image_r = image_w
        image_b = image_h

        # 类似求 IOU
        l = max(cropper_l, image_l)
        t = max(cropper_t, image_t)
        r = min(cropper_r, image_r)
        b = min(cropper_b, image_b)

        assert (
            0 <= l < r and 0 <= t < b
        ), f"cropper and image not overlap, {l},{t},{r},{b}"

        cropped_image = image[t:b, l:r, :]
        padding_l = max(0, image_l - cropper_l)
        padding_t = max(0, image_t - cropper_t)
        padding_r = max(0, cropper_r - image_r)
        padding_b = max(0, cropper_b - image_b)

        expanded_image, mask_image = expand_image(
            cropped_image,
            left=padding_l,
            top=padding_t,
            right=padding_r,
            bottom=padding_b,
            softness=config.sd_outpainting_softness,
            space=config.sd_outpainting_space,
        )

        # 最终扩大了的 image, BGR
        expanded_cropped_result_image = self._scaled_pad_forward(
            expanded_image, mask_image, config
        )

        # RGB -> BGR
        outpainting_image = cv2.copyMakeBorder(
            image,
            left=padding_l,
            top=padding_t,
            right=padding_r,
            bottom=padding_b,
            borderType=cv2.BORDER_CONSTANT,
            value=0,
        )[:, :, ::-1]

        # 把 cropped_result_image 贴到 outpainting_image 上,这一步不需要 blend
        paste_t = 0 if config.extender_y < 0 else config.extender_y
        paste_l = 0 if config.extender_x < 0 else config.extender_x

        outpainting_image[
            paste_t : paste_t + expanded_cropped_result_image.shape[0],
            paste_l : paste_l + expanded_cropped_result_image.shape[1],
            :,
        ] = expanded_cropped_result_image
        return outpainting_image

    def _scaled_pad_forward(self, image, mask, config: InpaintRequest):
        longer_side_length = int(config.sd_scale * max(image.shape[:2]))
        origin_size = image.shape[:2]
        downsize_image = resize_max_size(image, size_limit=longer_side_length)
        downsize_mask = resize_max_size(mask, size_limit=longer_side_length)
        if config.sd_scale != 1:
            logger.info(
                f"Resize image to do sd inpainting: {image.shape} -> {downsize_image.shape}"
            )
        inpaint_result = self._pad_forward(downsize_image, downsize_mask, config)
        # only paste masked area result
        inpaint_result = cv2.resize(
            inpaint_result,
            (origin_size[1], origin_size[0]),
            interpolation=cv2.INTER_CUBIC,
        )

        # blend result, copy from g_diffuser_bot
        # mask_rgb = 1.0 - np_img_grey_to_rgb(mask / 255.0)
        # inpaint_result = np.clip(
        #     inpaint_result * (1.0 - mask_rgb) + image * mask_rgb, 0.0, 255.0
        # )
        # original_pixel_indices = mask < 127
        # inpaint_result[original_pixel_indices] = image[:, :, ::-1][
        #     original_pixel_indices
        # ]
        return inpaint_result

    def set_scheduler(self, config: InpaintRequest):
        scheduler_config = self.model.scheduler.config
        sd_sampler = config.sd_sampler
        if config.sd_lcm_lora and self.model_info.support_lcm_lora:
            sd_sampler = SDSampler.lcm
            logger.info(f"LCM Lora enabled, use {sd_sampler} sampler")
        scheduler = get_scheduler(sd_sampler, scheduler_config)
        self.model.scheduler = scheduler

    def forward_pre_process(self, image, mask, config):
        if config.sd_mask_blur != 0:
            k = 2 * config.sd_mask_blur + 1
            mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]

        return image, mask

    def forward_post_process(self, result, image, mask, config):
        if config.sd_match_histograms:
            result = self._match_histograms(result, image[:, :, ::-1], mask)

        if config.sd_mask_blur != 0:
            k = 2 * config.sd_mask_blur + 1
            mask = cv2.GaussianBlur(mask, (k, k), 0)
        return result, image, mask