nikunjkdtechnoland
init commit some more add files
e041d7d
raw
history blame
11.4 kB
"""
Copyright (c) Alibaba, Inc. and its affiliates.
"""
import os
import cv2
import numpy as np
import math
import traceback
from easydict import EasyDict as edict
import time
from iopaint.model.anytext.ocr_recog.RecModel import RecModel
import torch
import torch.nn.functional as F
def min_bounding_rect(img):
ret, thresh = cv2.threshold(img, 127, 255, 0)
contours, hierarchy = cv2.findContours(
thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
if len(contours) == 0:
print("Bad contours, using fake bbox...")
return np.array([[0, 0], [100, 0], [100, 100], [0, 100]])
max_contour = max(contours, key=cv2.contourArea)
rect = cv2.minAreaRect(max_contour)
box = cv2.boxPoints(rect)
box = np.int0(box)
# sort
x_sorted = sorted(box, key=lambda x: x[0])
left = x_sorted[:2]
right = x_sorted[2:]
left = sorted(left, key=lambda x: x[1])
(tl, bl) = left
right = sorted(right, key=lambda x: x[1])
(tr, br) = right
if tl[1] > bl[1]:
(tl, bl) = (bl, tl)
if tr[1] > br[1]:
(tr, br) = (br, tr)
return np.array([tl, tr, br, bl])
def create_predictor(model_dir=None, model_lang="ch", is_onnx=False):
model_file_path = model_dir
if model_file_path is not None and not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(model_file_path))
if is_onnx:
import onnxruntime as ort
sess = ort.InferenceSession(
model_file_path, providers=["CPUExecutionProvider"]
) # 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
return sess
else:
if model_lang == "ch":
n_class = 6625
elif model_lang == "en":
n_class = 97
else:
raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}")
rec_config = edict(
in_channels=3,
backbone=edict(
type="MobileNetV1Enhance",
scale=0.5,
last_conv_stride=[1, 2],
last_pool_type="avg",
),
neck=edict(
type="SequenceEncoder",
encoder_type="svtr",
dims=64,
depth=2,
hidden_dims=120,
use_guide=True,
),
head=edict(
type="CTCHead",
fc_decay=0.00001,
out_channels=n_class,
return_feats=True,
),
)
rec_model = RecModel(rec_config)
if model_file_path is not None:
rec_model.load_state_dict(torch.load(model_file_path, map_location="cpu"))
rec_model.eval()
return rec_model.eval()
def _check_image_file(path):
img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff"}
return any([path.lower().endswith(e) for e in img_end])
def get_image_file_list(img_file):
imgs_lists = []
if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file))
if os.path.isfile(img_file) and _check_image_file(img_file):
imgs_lists.append(img_file)
elif os.path.isdir(img_file):
for single_file in os.listdir(img_file):
file_path = os.path.join(img_file, single_file)
if os.path.isfile(file_path) and _check_image_file(file_path):
imgs_lists.append(file_path)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file))
imgs_lists = sorted(imgs_lists)
return imgs_lists
class TextRecognizer(object):
def __init__(self, args, predictor):
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
self.rec_batch_num = args.rec_batch_num
self.predictor = predictor
self.chars = self.get_char_dict(args.rec_char_dict_path)
self.char2id = {x: i for i, x in enumerate(self.chars)}
self.is_onnx = not isinstance(self.predictor, torch.nn.Module)
self.use_fp16 = args.use_fp16
# img: CHW
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
assert imgC == img.shape[0]
imgW = int((imgH * max_wh_ratio))
h, w = img.shape[1:]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = torch.nn.functional.interpolate(
img.unsqueeze(0),
size=(imgH, resized_w),
mode="bilinear",
align_corners=True,
)
resized_image /= 255.0
resized_image -= 0.5
resized_image /= 0.5
padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device)
padding_im[:, :, 0:resized_w] = resized_image[0]
return padding_im
# img_list: list of tensors with shape chw 0-255
def pred_imglist(self, img_list, show_debug=False, is_ori=False):
img_num = len(img_list)
assert img_num > 0
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[2] / float(img.shape[1]))
# Sorting can speed up the recognition process
indices = torch.from_numpy(np.argsort(np.array(width_list)))
batch_num = self.rec_batch_num
preds_all = [None] * img_num
preds_neck_all = [None] * img_num
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
imgC, imgH, imgW = self.rec_image_shape[:3]
max_wh_ratio = imgW / imgH
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[1:]
if h > w * 1.2:
img = img_list[indices[ino]]
img = torch.transpose(img, 1, 2).flip(dims=[1])
img_list[indices[ino]] = img
h, w = img.shape[1:]
# wh_ratio = w * 1.0 / h
# max_wh_ratio = max(max_wh_ratio, wh_ratio) # comment to not use different ratio
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
if self.use_fp16:
norm_img = norm_img.half()
norm_img = norm_img.unsqueeze(0)
norm_img_batch.append(norm_img)
norm_img_batch = torch.cat(norm_img_batch, dim=0)
if show_debug:
for i in range(len(norm_img_batch)):
_img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy()
_img = (_img + 0.5) * 255
_img = _img[:, :, ::-1]
file_name = f"{indices[beg_img_no + i]}"
file_name = file_name + "_ori" if is_ori else file_name
cv2.imwrite(file_name + ".jpg", _img)
if self.is_onnx:
input_dict = {}
input_dict[self.predictor.get_inputs()[0].name] = (
norm_img_batch.detach().cpu().numpy()
)
outputs = self.predictor.run(None, input_dict)
preds = {}
preds["ctc"] = torch.from_numpy(outputs[0])
preds["ctc_neck"] = [torch.zeros(1)] * img_num
else:
preds = self.predictor(norm_img_batch)
for rno in range(preds["ctc"].shape[0]):
preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno]
preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno]
return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0)
def get_char_dict(self, character_dict_path):
character_str = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode("utf-8").strip("\n").strip("\r\n")
character_str.append(line)
dict_character = list(character_str)
dict_character = ["sos"] + dict_character + [" "] # eos is space
return dict_character
def get_text(self, order):
char_list = [self.chars[text_id] for text_id in order]
return "".join(char_list)
def decode(self, mat):
text_index = mat.detach().cpu().numpy().argmax(axis=1)
ignored_tokens = [0]
selection = np.ones(len(text_index), dtype=bool)
selection[1:] = text_index[1:] != text_index[:-1]
for ignored_token in ignored_tokens:
selection &= text_index != ignored_token
return text_index[selection], np.where(selection)[0]
def get_ctcloss(self, preds, gt_text, weight):
if not isinstance(weight, torch.Tensor):
weight = torch.tensor(weight).to(preds.device)
ctc_loss = torch.nn.CTCLoss(reduction="none")
log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) # NTC-->TNC
targets = []
target_lengths = []
for t in gt_text:
targets += [self.char2id.get(i, len(self.chars) - 1) for i in t]
target_lengths += [len(t)]
targets = torch.tensor(targets).to(preds.device)
target_lengths = torch.tensor(target_lengths).to(preds.device)
input_lengths = torch.tensor([log_probs.shape[0]] * (log_probs.shape[1])).to(
preds.device
)
loss = ctc_loss(log_probs, targets, input_lengths, target_lengths)
loss = loss / input_lengths * weight
return loss
def main():
rec_model_dir = "./ocr_weights/ppv3_rec.pth"
predictor = create_predictor(rec_model_dir)
args = edict()
args.rec_image_shape = "3, 48, 320"
args.rec_char_dict_path = "./ocr_weights/ppocr_keys_v1.txt"
args.rec_batch_num = 6
text_recognizer = TextRecognizer(args, predictor)
image_dir = "./test_imgs_cn"
gt_text = ["韩国小馆"] * 14
image_file_list = get_image_file_list(image_dir)
valid_image_file_list = []
img_list = []
for image_file in image_file_list:
img = cv2.imread(image_file)
if img is None:
print("error in loading image:{}".format(image_file))
continue
valid_image_file_list.append(image_file)
img_list.append(torch.from_numpy(img).permute(2, 0, 1).float())
try:
tic = time.time()
times = []
for i in range(10):
preds, _ = text_recognizer.pred_imglist(img_list) # get text
preds_all = preds.softmax(dim=2)
times += [(time.time() - tic) * 1000.0]
tic = time.time()
print(times)
print(np.mean(times[1:]) / len(preds_all))
weight = np.ones(len(gt_text))
loss = text_recognizer.get_ctcloss(preds, gt_text, weight)
for i in range(len(valid_image_file_list)):
pred = preds_all[i]
order, idx = text_recognizer.decode(pred)
text = text_recognizer.get_text(order)
print(
f'{valid_image_file_list[i]}: pred/gt="{text}"/"{gt_text[i]}", loss={loss[i]:.2f}'
)
except Exception as E:
print(traceback.format_exc(), E)
if __name__ == "__main__":
main()