Spaces:
Runtime error
Runtime error
from PIL import Image | |
import PIL.Image | |
import cv2 | |
import torch | |
from loguru import logger | |
from ..base import DiffusionInpaintModel | |
from ..helper.cpu_text_encoder import CPUTextEncoderWrapper | |
from ..utils import ( | |
handle_from_pretrained_exceptions, | |
get_torch_dtype, | |
enable_low_mem, | |
is_local_files_only, | |
) | |
from iopaint.schema import InpaintRequest | |
from .powerpaint_tokenizer import add_task_to_prompt | |
from ...const import POWERPAINT_NAME | |
class PowerPaint(DiffusionInpaintModel): | |
name = POWERPAINT_NAME | |
pad_mod = 8 | |
min_size = 512 | |
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" | |
def init_model(self, device: torch.device, **kwargs): | |
from .pipeline_powerpaint import StableDiffusionInpaintPipeline | |
from .powerpaint_tokenizer import PowerPaintTokenizer | |
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False)) | |
model_kwargs = {"local_files_only": is_local_files_only(**kwargs)} | |
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False): | |
logger.info("Disable Stable Diffusion Model NSFW checker") | |
model_kwargs.update( | |
dict( | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=False, | |
) | |
) | |
self.model = handle_from_pretrained_exceptions( | |
StableDiffusionInpaintPipeline.from_pretrained, | |
pretrained_model_name_or_path=self.name, | |
variant="fp16", | |
torch_dtype=torch_dtype, | |
**model_kwargs, | |
) | |
self.model.tokenizer = PowerPaintTokenizer(self.model.tokenizer) | |
enable_low_mem(self.model, kwargs.get("low_mem", False)) | |
if kwargs.get("cpu_offload", False) and use_gpu: | |
logger.info("Enable sequential cpu offload") | |
self.model.enable_sequential_cpu_offload(gpu_id=0) | |
else: | |
self.model = self.model.to(device) | |
if kwargs["sd_cpu_textencoder"]: | |
logger.info("Run Stable Diffusion TextEncoder on CPU") | |
self.model.text_encoder = CPUTextEncoderWrapper( | |
self.model.text_encoder, torch_dtype | |
) | |
self.callback = kwargs.pop("callback", None) | |
def forward(self, image, mask, config: InpaintRequest): | |
"""Input image and output image have same size | |
image: [H, W, C] RGB | |
mask: [H, W, 1] 255 means area to repaint | |
return: BGR IMAGE | |
""" | |
self.set_scheduler(config) | |
img_h, img_w = image.shape[:2] | |
promptA, promptB, negative_promptA, negative_promptB = add_task_to_prompt( | |
config.prompt, config.negative_prompt, config.powerpaint_task | |
) | |
output = self.model( | |
image=PIL.Image.fromarray(image), | |
promptA=promptA, | |
promptB=promptB, | |
tradoff=config.fitting_degree, | |
tradoff_nag=config.fitting_degree, | |
negative_promptA=negative_promptA, | |
negative_promptB=negative_promptB, | |
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), | |
num_inference_steps=config.sd_steps, | |
strength=config.sd_strength, | |
guidance_scale=config.sd_guidance_scale, | |
output_type="np", | |
callback=self.callback, | |
height=img_h, | |
width=img_w, | |
generator=torch.manual_seed(config.sd_seed), | |
callback_steps=1, | |
).images[0] | |
output = (output * 255).round().astype("uint8") | |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return output | |