Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# TinyViT Model Architecture | |
# Copyright (c) 2022 Microsoft | |
# Adapted from LeViT and Swin Transformer | |
# LeViT: (https://github.com/facebookresearch/levit) | |
# Swin: (https://github.com/microsoft/swin-transformer) | |
# Build the TinyViT Model | |
# -------------------------------------------------------- | |
import collections | |
import itertools | |
import math | |
import warnings | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from typing import Tuple | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): | |
return x | |
return tuple(itertools.repeat(x, n)) | |
return parse | |
to_2tuple = _ntuple(2) | |
def _trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn( | |
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2, | |
) | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.0)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): | |
# type: (Tensor, float, float, float, float) -> Tensor | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are | |
applied while sampling the normal with mean/std applied, therefore a, b args | |
should be adjusted to match the range of mean, std args. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
with torch.no_grad(): | |
return _trunc_normal_(tensor, mean, std, a, b) | |
def drop_path( | |
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True | |
): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * ( | |
x.ndim - 1 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0 and scale_by_keep: | |
random_tensor.div_(keep_prob) | |
return x * random_tensor | |
class TimmDropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): | |
super(TimmDropPath, self).__init__() | |
self.drop_prob = drop_prob | |
self.scale_by_keep = scale_by_keep | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
def extra_repr(self): | |
return f"drop_prob={round(self.drop_prob,3):0.3f}" | |
class Conv2d_BN(torch.nn.Sequential): | |
def __init__( | |
self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1 | |
): | |
super().__init__() | |
self.add_module( | |
"c", torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False) | |
) | |
bn = torch.nn.BatchNorm2d(b) | |
torch.nn.init.constant_(bn.weight, bn_weight_init) | |
torch.nn.init.constant_(bn.bias, 0) | |
self.add_module("bn", bn) | |
def fuse(self): | |
c, bn = self._modules.values() | |
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
w = c.weight * w[:, None, None, None] | |
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
m = torch.nn.Conv2d( | |
w.size(1) * self.c.groups, | |
w.size(0), | |
w.shape[2:], | |
stride=self.c.stride, | |
padding=self.c.padding, | |
dilation=self.c.dilation, | |
groups=self.c.groups, | |
) | |
m.weight.data.copy_(w) | |
m.bias.data.copy_(b) | |
return m | |
class DropPath(TimmDropPath): | |
def __init__(self, drop_prob=None): | |
super().__init__(drop_prob=drop_prob) | |
self.drop_prob = drop_prob | |
def __repr__(self): | |
msg = super().__repr__() | |
msg += f"(drop_prob={self.drop_prob})" | |
return msg | |
class PatchEmbed(nn.Module): | |
def __init__(self, in_chans, embed_dim, resolution, activation): | |
super().__init__() | |
img_size: Tuple[int, int] = to_2tuple(resolution) | |
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4) | |
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
n = embed_dim | |
self.seq = nn.Sequential( | |
Conv2d_BN(in_chans, n // 2, 3, 2, 1), | |
activation(), | |
Conv2d_BN(n // 2, n, 3, 2, 1), | |
) | |
def forward(self, x): | |
return self.seq(x) | |
class MBConv(nn.Module): | |
def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path): | |
super().__init__() | |
self.in_chans = in_chans | |
self.hidden_chans = int(in_chans * expand_ratio) | |
self.out_chans = out_chans | |
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1) | |
self.act1 = activation() | |
self.conv2 = Conv2d_BN( | |
self.hidden_chans, | |
self.hidden_chans, | |
ks=3, | |
stride=1, | |
pad=1, | |
groups=self.hidden_chans, | |
) | |
self.act2 = activation() | |
self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0) | |
self.act3 = activation() | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
def forward(self, x): | |
shortcut = x | |
x = self.conv1(x) | |
x = self.act1(x) | |
x = self.conv2(x) | |
x = self.act2(x) | |
x = self.conv3(x) | |
x = self.drop_path(x) | |
x += shortcut | |
x = self.act3(x) | |
return x | |
class PatchMerging(nn.Module): | |
def __init__(self, input_resolution, dim, out_dim, activation): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.out_dim = out_dim | |
self.act = activation() | |
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0) | |
stride_c = 2 | |
if out_dim == 320 or out_dim == 448 or out_dim == 576: | |
stride_c = 1 | |
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim) | |
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0) | |
def forward(self, x): | |
if x.ndim == 3: | |
H, W = self.input_resolution | |
B = len(x) | |
# (B, C, H, W) | |
x = x.view(B, H, W, -1).permute(0, 3, 1, 2) | |
x = self.conv1(x) | |
x = self.act(x) | |
x = self.conv2(x) | |
x = self.act(x) | |
x = self.conv3(x) | |
x = x.flatten(2).transpose(1, 2) | |
return x | |
class ConvLayer(nn.Module): | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
depth, | |
activation, | |
drop_path=0.0, | |
downsample=None, | |
use_checkpoint=False, | |
out_dim=None, | |
conv_expand_ratio=4.0, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList( | |
[ | |
MBConv( | |
dim, | |
dim, | |
conv_expand_ratio, | |
activation, | |
drop_path[i] if isinstance(drop_path, list) else drop_path, | |
) | |
for i in range(depth) | |
] | |
) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample( | |
input_resolution, dim=dim, out_dim=out_dim, activation=activation | |
) | |
else: | |
self.downsample = None | |
def forward(self, x): | |
for blk in self.blocks: | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
if self.downsample is not None: | |
x = self.downsample(x) | |
return x | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.norm = nn.LayerNorm(in_features) | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.act = act_layer() | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.norm(x) | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(torch.nn.Module): | |
def __init__( | |
self, | |
dim, | |
key_dim, | |
num_heads=8, | |
attn_ratio=4, | |
resolution=(14, 14), | |
): | |
super().__init__() | |
# (h, w) | |
assert isinstance(resolution, tuple) and len(resolution) == 2 | |
self.num_heads = num_heads | |
self.scale = key_dim**-0.5 | |
self.key_dim = key_dim | |
self.nh_kd = nh_kd = key_dim * num_heads | |
self.d = int(attn_ratio * key_dim) | |
self.dh = int(attn_ratio * key_dim) * num_heads | |
self.attn_ratio = attn_ratio | |
h = self.dh + nh_kd * 2 | |
self.norm = nn.LayerNorm(dim) | |
self.qkv = nn.Linear(dim, h) | |
self.proj = nn.Linear(self.dh, dim) | |
points = list(itertools.product(range(resolution[0]), range(resolution[1]))) | |
N = len(points) | |
attention_offsets = {} | |
idxs = [] | |
for p1 in points: | |
for p2 in points: | |
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) | |
if offset not in attention_offsets: | |
attention_offsets[offset] = len(attention_offsets) | |
idxs.append(attention_offsets[offset]) | |
self.attention_biases = torch.nn.Parameter( | |
torch.zeros(num_heads, len(attention_offsets)) | |
) | |
self.register_buffer( | |
"attention_bias_idxs", torch.LongTensor(idxs).view(N, N), persistent=False | |
) | |
def train(self, mode=True): | |
super().train(mode) | |
if mode and hasattr(self, "ab"): | |
del self.ab | |
else: | |
self.register_buffer( | |
"ab", | |
self.attention_biases[:, self.attention_bias_idxs], | |
persistent=False, | |
) | |
def forward(self, x): # x (B,N,C) | |
B, N, _ = x.shape | |
# Normalization | |
x = self.norm(x) | |
qkv = self.qkv(x) | |
# (B, N, num_heads, d) | |
q, k, v = qkv.view(B, N, self.num_heads, -1).split( | |
[self.key_dim, self.key_dim, self.d], dim=3 | |
) | |
# (B, num_heads, N, d) | |
q = q.permute(0, 2, 1, 3) | |
k = k.permute(0, 2, 1, 3) | |
v = v.permute(0, 2, 1, 3) | |
attn = (q @ k.transpose(-2, -1)) * self.scale + ( | |
self.attention_biases[:, self.attention_bias_idxs] | |
if self.training | |
else self.ab | |
) | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh) | |
x = self.proj(x) | |
return x | |
class TinyViTBlock(nn.Module): | |
r"""TinyViT Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int, int]): Input resolution. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
local_conv_size (int): the kernel size of the convolution between | |
Attention and MLP. Default: 3 | |
activation: the activation function. Default: nn.GELU | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
num_heads, | |
window_size=7, | |
mlp_ratio=4.0, | |
drop=0.0, | |
drop_path=0.0, | |
local_conv_size=3, | |
activation=nn.GELU, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads = num_heads | |
assert window_size > 0, "window_size must be greater than 0" | |
self.window_size = window_size | |
self.mlp_ratio = mlp_ratio | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
assert dim % num_heads == 0, "dim must be divisible by num_heads" | |
head_dim = dim // num_heads | |
window_resolution = (window_size, window_size) | |
self.attn = Attention( | |
dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution | |
) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
mlp_activation = activation | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=mlp_activation, | |
drop=drop, | |
) | |
pad = local_conv_size // 2 | |
self.local_conv = Conv2d_BN( | |
dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim | |
) | |
def forward(self, x): | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
res_x = x | |
if H == self.window_size and W == self.window_size: | |
x = self.attn(x) | |
else: | |
x = x.view(B, H, W, C) | |
pad_b = (self.window_size - H % self.window_size) % self.window_size | |
pad_r = (self.window_size - W % self.window_size) % self.window_size | |
padding = pad_b > 0 or pad_r > 0 | |
if padding: | |
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) | |
pH, pW = H + pad_b, W + pad_r | |
nH = pH // self.window_size | |
nW = pW // self.window_size | |
# window partition | |
x = ( | |
x.view(B, nH, self.window_size, nW, self.window_size, C) | |
.transpose(2, 3) | |
.reshape(B * nH * nW, self.window_size * self.window_size, C) | |
) | |
x = self.attn(x) | |
# window reverse | |
x = ( | |
x.view(B, nH, nW, self.window_size, self.window_size, C) | |
.transpose(2, 3) | |
.reshape(B, pH, pW, C) | |
) | |
if padding: | |
x = x[:, :H, :W].contiguous() | |
x = x.view(B, L, C) | |
x = res_x + self.drop_path(x) | |
x = x.transpose(1, 2).reshape(B, C, H, W) | |
x = self.local_conv(x) | |
x = x.view(B, C, L).transpose(1, 2) | |
x = x + self.drop_path(self.mlp(x)) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " | |
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" | |
) | |
class BasicLayer(nn.Module): | |
"""A basic TinyViT layer for one stage. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3 | |
activation: the activation function. Default: nn.GELU | |
out_dim: the output dimension of the layer. Default: dim | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
depth, | |
num_heads, | |
window_size, | |
mlp_ratio=4.0, | |
drop=0.0, | |
drop_path=0.0, | |
downsample=None, | |
use_checkpoint=False, | |
local_conv_size=3, | |
activation=nn.GELU, | |
out_dim=None, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList( | |
[ | |
TinyViTBlock( | |
dim=dim, | |
input_resolution=input_resolution, | |
num_heads=num_heads, | |
window_size=window_size, | |
mlp_ratio=mlp_ratio, | |
drop=drop, | |
drop_path=drop_path[i] | |
if isinstance(drop_path, list) | |
else drop_path, | |
local_conv_size=local_conv_size, | |
activation=activation, | |
) | |
for i in range(depth) | |
] | |
) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample( | |
input_resolution, dim=dim, out_dim=out_dim, activation=activation | |
) | |
else: | |
self.downsample = None | |
def forward(self, x): | |
for blk in self.blocks: | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
if self.downsample is not None: | |
x = self.downsample(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | |
class LayerNorm2d(nn.Module): | |
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(num_channels)) | |
self.bias = nn.Parameter(torch.zeros(num_channels)) | |
self.eps = eps | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class TinyViT(nn.Module): | |
def __init__( | |
self, | |
img_size=224, | |
in_chans=3, | |
num_classes=1000, | |
embed_dims=[96, 192, 384, 768], | |
depths=[2, 2, 6, 2], | |
num_heads=[3, 6, 12, 24], | |
window_sizes=[7, 7, 14, 7], | |
mlp_ratio=4.0, | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
use_checkpoint=False, | |
mbconv_expand_ratio=4.0, | |
local_conv_size=3, | |
layer_lr_decay=1.0, | |
): | |
super().__init__() | |
self.img_size = img_size | |
self.num_classes = num_classes | |
self.depths = depths | |
self.num_layers = len(depths) | |
self.mlp_ratio = mlp_ratio | |
activation = nn.GELU | |
self.patch_embed = PatchEmbed( | |
in_chans=in_chans, | |
embed_dim=embed_dims[0], | |
resolution=img_size, | |
activation=activation, | |
) | |
patches_resolution = self.patch_embed.patches_resolution | |
self.patches_resolution = patches_resolution | |
# stochastic depth | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
kwargs = dict( | |
dim=embed_dims[i_layer], | |
input_resolution=( | |
patches_resolution[0] | |
// (2 ** (i_layer - 1 if i_layer == 3 else i_layer)), | |
patches_resolution[1] | |
// (2 ** (i_layer - 1 if i_layer == 3 else i_layer)), | |
), | |
# input_resolution=(patches_resolution[0] // (2 ** i_layer), | |
# patches_resolution[1] // (2 ** i_layer)), | |
depth=depths[i_layer], | |
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], | |
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, | |
use_checkpoint=use_checkpoint, | |
out_dim=embed_dims[min(i_layer + 1, len(embed_dims) - 1)], | |
activation=activation, | |
) | |
if i_layer == 0: | |
layer = ConvLayer( | |
conv_expand_ratio=mbconv_expand_ratio, | |
**kwargs, | |
) | |
else: | |
layer = BasicLayer( | |
num_heads=num_heads[i_layer], | |
window_size=window_sizes[i_layer], | |
mlp_ratio=self.mlp_ratio, | |
drop=drop_rate, | |
local_conv_size=local_conv_size, | |
**kwargs, | |
) | |
self.layers.append(layer) | |
# Classifier head | |
self.norm_head = nn.LayerNorm(embed_dims[-1]) | |
self.head = ( | |
nn.Linear(embed_dims[-1], num_classes) | |
if num_classes > 0 | |
else torch.nn.Identity() | |
) | |
# init weights | |
self.apply(self._init_weights) | |
self.set_layer_lr_decay(layer_lr_decay) | |
self.neck = nn.Sequential( | |
nn.Conv2d( | |
embed_dims[-1], | |
256, | |
kernel_size=1, | |
bias=False, | |
), | |
LayerNorm2d(256), | |
nn.Conv2d( | |
256, | |
256, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
), | |
LayerNorm2d(256), | |
) | |
def set_layer_lr_decay(self, layer_lr_decay): | |
decay_rate = layer_lr_decay | |
# layers -> blocks (depth) | |
depth = sum(self.depths) | |
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)] | |
# print("LR SCALES:", lr_scales) | |
def _set_lr_scale(m, scale): | |
for p in m.parameters(): | |
p.lr_scale = scale | |
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0])) | |
i = 0 | |
for layer in self.layers: | |
for block in layer.blocks: | |
block.apply(lambda x: _set_lr_scale(x, lr_scales[i])) | |
i += 1 | |
if layer.downsample is not None: | |
layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1])) | |
assert i == depth | |
for m in [self.norm_head, self.head]: | |
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1])) | |
for k, p in self.named_parameters(): | |
p.param_name = k | |
def _check_lr_scale(m): | |
for p in m.parameters(): | |
assert hasattr(p, "lr_scale"), p.param_name | |
self.apply(_check_lr_scale) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay_keywords(self): | |
return {"attention_biases"} | |
def forward_features(self, x): | |
# x: (N, C, H, W) | |
x = self.patch_embed(x) | |
x = self.layers[0](x) | |
start_i = 1 | |
for i in range(start_i, len(self.layers)): | |
layer = self.layers[i] | |
x = layer(x) | |
B, _, C = x.size() | |
x = x.view(B, 64, 64, C) | |
x = x.permute(0, 3, 1, 2) | |
x = self.neck(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
# x = self.norm_head(x) | |
# x = self.head(x) | |
return x | |