File size: 11,481 Bytes
89c278d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import os
import numpy as np
import torch
from loguru import logger
from .base import InpaintModel
from .ddim_sampler import DDIMSampler
from .plms_sampler import PLMSSampler
from iopaint.schema import InpaintRequest, LDMSampler
torch.manual_seed(42)
import torch.nn as nn
from iopaint.helper import (
download_model,
norm_img,
get_cache_path_by_url,
load_jit_model,
)
from .utils import (
make_beta_schedule,
timestep_embedding,
)
LDM_ENCODE_MODEL_URL = os.environ.get(
"LDM_ENCODE_MODEL_URL",
"https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_encode.pt",
)
LDM_ENCODE_MODEL_MD5 = os.environ.get(
"LDM_ENCODE_MODEL_MD5", "23239fc9081956a3e70de56472b3f296"
)
LDM_DECODE_MODEL_URL = os.environ.get(
"LDM_DECODE_MODEL_URL",
"https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_decode.pt",
)
LDM_DECODE_MODEL_MD5 = os.environ.get(
"LDM_DECODE_MODEL_MD5", "fe419cd15a750d37a4733589d0d3585c"
)
LDM_DIFFUSION_MODEL_URL = os.environ.get(
"LDM_DIFFUSION_MODEL_URL",
"https://github.com/Sanster/models/releases/download/add_ldm/diffusion.pt",
)
LDM_DIFFUSION_MODEL_MD5 = os.environ.get(
"LDM_DIFFUSION_MODEL_MD5", "b0afda12bf790c03aba2a7431f11d22d"
)
class DDPM(nn.Module):
# classic DDPM with Gaussian diffusion, in image space
def __init__(
self,
device,
timesteps=1000,
beta_schedule="linear",
linear_start=0.0015,
linear_end=0.0205,
cosine_s=0.008,
original_elbo_weight=0.0,
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
l_simple_weight=1.0,
parameterization="eps", # all assuming fixed variance schedules
use_positional_encodings=False,
):
super().__init__()
self.device = device
self.parameterization = parameterization
self.use_positional_encodings = use_positional_encodings
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
self.register_schedule(
beta_schedule=beta_schedule,
timesteps=timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
def register_schedule(
self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
betas = make_beta_schedule(
self.device,
beta_schedule,
timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
(timesteps,) = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert (
alphas_cumprod.shape[0] == self.num_timesteps
), "alphas have to be defined for each timestep"
to_torch = lambda x: torch.tensor(x, dtype=torch.float32).to(self.device)
self.register_buffer("betas", to_torch(betas))
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer(
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
)
self.register_buffer(
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
)
self.register_buffer(
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
)
self.register_buffer(
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
)
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (
1.0 - alphas_cumprod_prev
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer("posterior_variance", to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer(
"posterior_log_variance_clipped",
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
)
self.register_buffer(
"posterior_mean_coef1",
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
)
self.register_buffer(
"posterior_mean_coef2",
to_torch(
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
),
)
if self.parameterization == "eps":
lvlb_weights = self.betas**2 / (
2
* self.posterior_variance
* to_torch(alphas)
* (1 - self.alphas_cumprod)
)
elif self.parameterization == "x0":
lvlb_weights = (
0.5
* np.sqrt(torch.Tensor(alphas_cumprod))
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
)
else:
raise NotImplementedError("mu not supported")
# TODO how to choose this term
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
class LatentDiffusion(DDPM):
def __init__(
self,
diffusion_model,
device,
cond_stage_key="image",
cond_stage_trainable=False,
concat_mode=True,
scale_factor=1.0,
scale_by_std=False,
*args,
**kwargs,
):
self.num_timesteps_cond = 1
self.scale_by_std = scale_by_std
super().__init__(device, *args, **kwargs)
self.diffusion_model = diffusion_model
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
self.num_downs = 2
self.scale_factor = scale_factor
def make_cond_schedule(
self,
):
self.cond_ids = torch.full(
size=(self.num_timesteps,),
fill_value=self.num_timesteps - 1,
dtype=torch.long,
)
ids = torch.round(
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
).long()
self.cond_ids[: self.num_timesteps_cond] = ids
def register_schedule(
self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
super().register_schedule(
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
)
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
def apply_model(self, x_noisy, t, cond):
# x_recon = self.model(x_noisy, t, cond['c_concat'][0]) # cond['c_concat'][0].shape 1,4,128,128
t_emb = timestep_embedding(x_noisy.device, t, 256, repeat_only=False)
x_recon = self.diffusion_model(x_noisy, t_emb, cond)
return x_recon
class LDM(InpaintModel):
name = "ldm"
pad_mod = 32
is_erase_model = True
def __init__(self, device, fp16: bool = True, **kwargs):
self.fp16 = fp16
super().__init__(device)
self.device = device
def init_model(self, device, **kwargs):
self.diffusion_model = load_jit_model(
LDM_DIFFUSION_MODEL_URL, device, LDM_DIFFUSION_MODEL_MD5
)
self.cond_stage_model_decode = load_jit_model(
LDM_DECODE_MODEL_URL, device, LDM_DECODE_MODEL_MD5
)
self.cond_stage_model_encode = load_jit_model(
LDM_ENCODE_MODEL_URL, device, LDM_ENCODE_MODEL_MD5
)
if self.fp16 and "cuda" in str(device):
self.diffusion_model = self.diffusion_model.half()
self.cond_stage_model_decode = self.cond_stage_model_decode.half()
self.cond_stage_model_encode = self.cond_stage_model_encode.half()
self.model = LatentDiffusion(self.diffusion_model, device)
@staticmethod
def download():
download_model(LDM_DIFFUSION_MODEL_URL, LDM_DIFFUSION_MODEL_MD5)
download_model(LDM_DECODE_MODEL_URL, LDM_DECODE_MODEL_MD5)
download_model(LDM_ENCODE_MODEL_URL, LDM_ENCODE_MODEL_MD5)
@staticmethod
def is_downloaded() -> bool:
model_paths = [
get_cache_path_by_url(LDM_DIFFUSION_MODEL_URL),
get_cache_path_by_url(LDM_DECODE_MODEL_URL),
get_cache_path_by_url(LDM_ENCODE_MODEL_URL),
]
return all([os.path.exists(it) for it in model_paths])
@torch.cuda.amp.autocast()
def forward(self, image, mask, config: InpaintRequest):
"""
image: [H, W, C] RGB
mask: [H, W, 1]
return: BGR IMAGE
"""
# image [1,3,512,512] float32
# mask: [1,1,512,512] float32
# masked_image: [1,3,512,512] float32
if config.ldm_sampler == LDMSampler.ddim:
sampler = DDIMSampler(self.model)
elif config.ldm_sampler == LDMSampler.plms:
sampler = PLMSSampler(self.model)
else:
raise ValueError()
steps = config.ldm_steps
image = norm_img(image)
mask = norm_img(mask)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
masked_image = (1 - mask) * image
mask = self._norm(mask)
masked_image = self._norm(masked_image)
c = self.cond_stage_model_encode(masked_image)
torch.cuda.empty_cache()
cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # 1,1,128,128
c = torch.cat((c, cc), dim=1) # 1,4,128,128
shape = (c.shape[1] - 1,) + c.shape[2:]
samples_ddim = sampler.sample(
steps=steps, conditioning=c, batch_size=c.shape[0], shape=shape
)
torch.cuda.empty_cache()
x_samples_ddim = self.cond_stage_model_decode(
samples_ddim
) # samples_ddim: 1, 3, 128, 128 float32
torch.cuda.empty_cache()
# image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
# mask = torch.clamp((mask + 1.0) / 2.0, min=0.0, max=1.0)
inpainted_image = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
# inpainted = (1 - mask) * image + mask * predicted_image
inpainted_image = inpainted_image.cpu().numpy().transpose(0, 2, 3, 1)[0] * 255
inpainted_image = inpainted_image.astype(np.uint8)[:, :, ::-1]
return inpainted_image
def _norm(self, tensor):
return tensor * 2.0 - 1.0
|