File size: 3,631 Bytes
cbbdd92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import hashlib
import os
import time
from PIL import Image

from iopaint.helper import encode_pil_to_base64, gen_frontend_mask
from iopaint.plugins.anime_seg import AnimeSeg
from iopaint.schema import RunPluginRequest, RemoveBGModel
from iopaint.tests.utils import check_device, current_dir, save_dir

os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import cv2
import pytest

from iopaint.plugins import (
    RemoveBG,
    RealESRGANUpscaler,
    GFPGANPlugin,
    RestoreFormerPlugin,
    InteractiveSeg,
)

img_p = current_dir / "bunny.jpeg"
img_bytes = open(img_p, "rb").read()
bgr_img = cv2.imread(str(img_p))
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
rgb_img_base64 = encode_pil_to_base64(Image.fromarray(rgb_img), 100, {})
bgr_img_base64 = encode_pil_to_base64(Image.fromarray(bgr_img), 100, {})


def _save(img, name):
    cv2.imwrite(str(save_dir / name), img)


def test_remove_bg():
    model = RemoveBG(RemoveBGModel.briaai_rmbg_1_4)
    rgba_np_img = model.gen_image(
        rgb_img, RunPluginRequest(name=RemoveBG.name, image=rgb_img_base64)
    )
    res = cv2.cvtColor(rgba_np_img, cv2.COLOR_RGBA2BGRA)
    _save(res, "test_remove_bg.png")

    bgr_np_img = model.gen_mask(
        rgb_img, RunPluginRequest(name=RemoveBG.name, image=rgb_img_base64)
    )

    res_mask = gen_frontend_mask(bgr_np_img)
    _save(res_mask, "test_remove_bg_frontend_mask.png")

    assert len(bgr_np_img.shape) == 2
    _save(bgr_np_img, "test_remove_bg_mask.jpeg")


def test_anime_seg():
    model = AnimeSeg()
    img = cv2.imread(str(current_dir / "anime_test.png"))
    img_base64 = encode_pil_to_base64(Image.fromarray(img), 100, {})
    res = model.gen_image(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
    assert len(res.shape) == 3
    assert res.shape[-1] == 4
    _save(res, "test_anime_seg.png")

    res = model.gen_mask(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
    assert len(res.shape) == 2
    _save(res, "test_anime_seg_mask.png")


@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
def test_upscale(device):
    check_device(device)
    model = RealESRGANUpscaler("realesr-general-x4v3", device)
    res = model.gen_image(
        rgb_img,
        RunPluginRequest(name=RealESRGANUpscaler.name, image=rgb_img_base64, scale=2),
    )
    _save(res, f"test_upscale_x2_{device}.png")

    res = model.gen_image(
        rgb_img,
        RunPluginRequest(name=RealESRGANUpscaler.name, image=rgb_img_base64, scale=4),
    )
    _save(res, f"test_upscale_x4_{device}.png")


@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
def test_gfpgan(device):
    check_device(device)
    model = GFPGANPlugin(device)
    res = model.gen_image(
        rgb_img, RunPluginRequest(name=GFPGANPlugin.name, image=rgb_img_base64)
    )
    _save(res, f"test_gfpgan_{device}.png")


@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
def test_restoreformer(device):
    check_device(device)
    model = RestoreFormerPlugin(device)
    res = model.gen_image(
        rgb_img, RunPluginRequest(name=RestoreFormerPlugin.name, image=rgb_img_base64)
    )
    _save(res, f"test_restoreformer_{device}.png")


@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
def test_segment_anything(device):
    check_device(device)
    model = InteractiveSeg("vit_l", device)
    new_mask = model.gen_mask(
        rgb_img,
        RunPluginRequest(
            name=InteractiveSeg.name,
            image=rgb_img_base64,
            clicks=([[448 // 2, 394 // 2, 1]]),
        ),
    )

    save_name = f"test_segment_anything_{device}.png"
    _save(new_mask, save_name)