File size: 16,122 Bytes
4b98c85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
import os
import torch
import yaml
import numpy as np
from PIL import Image
import torch.nn.functional as F
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def default_loader(path):
return pil_loader(path)
def tensor_img_to_npimg(tensor_img):
"""
Turn a tensor image with shape CxHxW to a numpy array image with shape HxWxC
:param tensor_img:
:return: a numpy array image with shape HxWxC
"""
if not (torch.is_tensor(tensor_img) and tensor_img.ndimension() == 3):
raise NotImplementedError("Not supported tensor image. Only tensors with dimension CxHxW are supported.")
npimg = np.transpose(tensor_img.numpy(), (1, 2, 0))
npimg = npimg.squeeze()
assert isinstance(npimg, np.ndarray) and (npimg.ndim in {2, 3})
return npimg
# Change the values of tensor x from range [0, 1] to [-1, 1]
def normalize(x):
return x.mul_(2).add_(-1)
def same_padding(images, ksizes, strides, rates):
assert len(images.size()) == 4
batch_size, channel, rows, cols = images.size()
out_rows = (rows + strides[0] - 1) // strides[0]
out_cols = (cols + strides[1] - 1) // strides[1]
effective_k_row = (ksizes[0] - 1) * rates[0] + 1
effective_k_col = (ksizes[1] - 1) * rates[1] + 1
padding_rows = max(0, (out_rows-1)*strides[0]+effective_k_row-rows)
padding_cols = max(0, (out_cols-1)*strides[1]+effective_k_col-cols)
# Pad the input
padding_top = int(padding_rows / 2.)
padding_left = int(padding_cols / 2.)
padding_bottom = padding_rows - padding_top
padding_right = padding_cols - padding_left
paddings = (padding_left, padding_right, padding_top, padding_bottom)
images = torch.nn.ZeroPad2d(paddings)(images)
return images
def extract_image_patches(images, ksizes, strides, rates, padding='same'):
"""
Extract patches from images and put them in the C output dimension.
:param padding:
:param images: [batch, channels, in_rows, in_cols]. A 4-D Tensor with shape
:param ksizes: [ksize_rows, ksize_cols]. The size of the sliding window for
each dimension of images
:param strides: [stride_rows, stride_cols]
:param rates: [dilation_rows, dilation_cols]
:return: A Tensor
"""
assert len(images.size()) == 4
assert padding in ['same', 'valid']
batch_size, channel, height, width = images.size()
if padding == 'same':
images = same_padding(images, ksizes, strides, rates)
elif padding == 'valid':
pass
else:
raise NotImplementedError('Unsupported padding type: {}.\
Only "same" or "valid" are supported.'.format(padding))
unfold = torch.nn.Unfold(kernel_size=ksizes,
dilation=rates,
padding=0,
stride=strides)
patches = unfold(images)
return patches # [N, C*k*k, L], L is the total number of such blocks
def random_bbox(config, batch_size):
"""Generate a random tlhw with configuration.
Args:
config: Config should have configuration including img
Returns:
tuple: (top, left, height, width)
"""
img_height, img_width, _ = config['image_shape']
h, w = config['mask_shape']
margin_height, margin_width = config['margin']
maxt = img_height - margin_height - h
maxl = img_width - margin_width - w
bbox_list = []
if config['mask_batch_same']:
t = np.random.randint(margin_height, maxt)
l = np.random.randint(margin_width, maxl)
bbox_list.append((t, l, h, w))
bbox_list = bbox_list * batch_size
else:
for i in range(batch_size):
t = np.random.randint(margin_height, maxt)
l = np.random.randint(margin_width, maxl)
bbox_list.append((t, l, h, w))
return torch.tensor(bbox_list, dtype=torch.int64)
def test_random_bbox():
image_shape = [256, 256, 3]
mask_shape = [128, 128]
margin = [0, 0]
bbox = random_bbox(image_shape)
return bbox
def bbox2mask(bboxes, height, width, max_delta_h, max_delta_w):
batch_size = bboxes.size(0)
mask = torch.zeros((batch_size, 1, height, width), dtype=torch.float32)
for i in range(batch_size):
bbox = bboxes[i]
delta_h = np.random.randint(max_delta_h // 2 + 1)
delta_w = np.random.randint(max_delta_w // 2 + 1)
mask[i, :, bbox[0] + delta_h:bbox[0] + bbox[2] - delta_h, bbox[1] + delta_w:bbox[1] + bbox[3] - delta_w] = 1.
return mask
def test_bbox2mask():
image_shape = [256, 256, 3]
mask_shape = [128, 128]
margin = [0, 0]
max_delta_shape = [32, 32]
bbox = random_bbox(image_shape)
mask = bbox2mask(bbox, image_shape[0], image_shape[1], max_delta_shape[0], max_delta_shape[1])
return mask
def local_patch(x, bbox_list):
assert len(x.size()) == 4
patches = []
for i, bbox in enumerate(bbox_list):
t, l, h, w = bbox
patches.append(x[i, :, t:t + h, l:l + w])
return torch.stack(patches, dim=0)
def mask_image(x, bboxes, config):
height, width, _ = config['image_shape']
max_delta_h, max_delta_w = config['max_delta_shape']
mask = bbox2mask(bboxes, height, width, max_delta_h, max_delta_w)
if x.is_cuda:
mask = mask.cuda()
if config['mask_type'] == 'hole':
result = x * (1. - mask)
elif config['mask_type'] == 'mosaic':
# TODO: Matching the mosaic patch size and the mask size
mosaic_unit_size = config['mosaic_unit_size']
downsampled_image = F.interpolate(x, scale_factor=1. / mosaic_unit_size, mode='nearest')
upsampled_image = F.interpolate(downsampled_image, size=(height, width), mode='nearest')
result = upsampled_image * mask + x * (1. - mask)
else:
raise NotImplementedError('Not implemented mask type.')
return result, mask
def spatial_discounting_mask(config):
"""Generate spatial discounting mask constant.
Spatial discounting mask is first introduced in publication:
Generative Image Inpainting with Contextual Attention, Yu et al.
Args:
config: Config should have configuration including HEIGHT, WIDTH,
DISCOUNTED_MASK.
Returns:
tf.Tensor: spatial discounting mask
"""
gamma = config['spatial_discounting_gamma']
height, width = config['mask_shape']
shape = [1, 1, height, width]
if config['discounted_mask']:
mask_values = np.ones((height, width))
for i in range(height):
for j in range(width):
mask_values[i, j] = max(
gamma ** min(i, height - i),
gamma ** min(j, width - j))
mask_values = np.expand_dims(mask_values, 0)
mask_values = np.expand_dims(mask_values, 0)
else:
mask_values = np.ones(shape)
spatial_discounting_mask_tensor = torch.tensor(mask_values, dtype=torch.float32)
if config['cuda']:
spatial_discounting_mask_tensor = spatial_discounting_mask_tensor.cuda()
return spatial_discounting_mask_tensor
def reduce_mean(x, axis=None, keepdim=False):
if not axis:
axis = range(len(x.shape))
for i in sorted(axis, reverse=True):
x = torch.mean(x, dim=i, keepdim=keepdim)
return x
def reduce_std(x, axis=None, keepdim=False):
if not axis:
axis = range(len(x.shape))
for i in sorted(axis, reverse=True):
x = torch.std(x, dim=i, keepdim=keepdim)
return x
def reduce_sum(x, axis=None, keepdim=False):
if not axis:
axis = range(len(x.shape))
for i in sorted(axis, reverse=True):
x = torch.sum(x, dim=i, keepdim=keepdim)
return x
def flow_to_image(flow):
"""Transfer flow map to image.
Part of code forked from flownet.
"""
out = []
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
maxrad = -1
for i in range(flow.shape[0]):
u = flow[i, :, :, 0]
v = flow[i, :, :, 1]
idxunknow = (abs(u) > 1e7) | (abs(v) > 1e7)
u[idxunknow] = 0
v[idxunknow] = 0
maxu = max(maxu, np.max(u))
minu = min(minu, np.min(u))
maxv = max(maxv, np.max(v))
minv = min(minv, np.min(v))
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(maxrad, np.max(rad))
u = u / (maxrad + np.finfo(float).eps)
v = v / (maxrad + np.finfo(float).eps)
img = compute_color(u, v)
out.append(img)
return np.float32(np.uint8(out))
def pt_flow_to_image(flow):
"""Transfer flow map to image.
Part of code forked from flownet.
"""
out = []
maxu = torch.tensor(-999)
maxv = torch.tensor(-999)
minu = torch.tensor(999)
minv = torch.tensor(999)
maxrad = torch.tensor(-1)
if torch.cuda.is_available():
maxu = maxu.cuda()
maxv = maxv.cuda()
minu = minu.cuda()
minv = minv.cuda()
maxrad = maxrad.cuda()
for i in range(flow.shape[0]):
u = flow[i, 0, :, :]
v = flow[i, 1, :, :]
idxunknow = (torch.abs(u) > 1e7) + (torch.abs(v) > 1e7)
u[idxunknow] = 0
v[idxunknow] = 0
maxu = torch.max(maxu, torch.max(u))
minu = torch.min(minu, torch.min(u))
maxv = torch.max(maxv, torch.max(v))
minv = torch.min(minv, torch.min(v))
rad = torch.sqrt((u ** 2 + v ** 2).float()).to(torch.int64)
maxrad = torch.max(maxrad, torch.max(rad))
u = u / (maxrad + torch.finfo(torch.float32).eps)
v = v / (maxrad + torch.finfo(torch.float32).eps)
# TODO: change the following to pytorch
img = pt_compute_color(u, v)
out.append(img)
return torch.stack(out, dim=0)
def highlight_flow(flow):
"""Convert flow into middlebury color code image.
"""
out = []
s = flow.shape
for i in range(flow.shape[0]):
img = np.ones((s[1], s[2], 3)) * 144.
u = flow[i, :, :, 0]
v = flow[i, :, :, 1]
for h in range(s[1]):
for w in range(s[1]):
ui = u[h, w]
vi = v[h, w]
img[ui, vi, :] = 255.
out.append(img)
return np.float32(np.uint8(out))
def pt_highlight_flow(flow):
"""Convert flow into middlebury color code image.
"""
out = []
s = flow.shape
for i in range(flow.shape[0]):
img = np.ones((s[1], s[2], 3)) * 144.
u = flow[i, :, :, 0]
v = flow[i, :, :, 1]
for h in range(s[1]):
for w in range(s[1]):
ui = u[h, w]
vi = v[h, w]
img[ui, vi, :] = 255.
out.append(img)
return np.float32(np.uint8(out))
def compute_color(u, v):
h, w = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
# colorwheel = COLORWHEEL
colorwheel = make_color_wheel()
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u ** 2 + v ** 2)
a = np.arctan2(-v, -u) / np.pi
fk = (a + 1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols + 1] = 1
f = fk - k0
for i in range(np.size(colorwheel, 1)):
tmp = colorwheel[:, i]
col0 = tmp[k0 - 1] / 255
col1 = tmp[k1 - 1] / 255
col = (1 - f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1 - rad[idx] * (1 - col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx)))
return img
def pt_compute_color(u, v):
h, w = u.shape
img = torch.zeros([3, h, w])
if torch.cuda.is_available():
img = img.cuda()
nanIdx = (torch.isnan(u) + torch.isnan(v)) != 0
u[nanIdx] = 0.
v[nanIdx] = 0.
# colorwheel = COLORWHEEL
colorwheel = pt_make_color_wheel()
if torch.cuda.is_available():
colorwheel = colorwheel.cuda()
ncols = colorwheel.size()[0]
rad = torch.sqrt((u ** 2 + v ** 2).to(torch.float32))
a = torch.atan2(-v.to(torch.float32), -u.to(torch.float32)) / np.pi
fk = (a + 1) / 2 * (ncols - 1) + 1
k0 = torch.floor(fk).to(torch.int64)
k1 = k0 + 1
k1[k1 == ncols + 1] = 1
f = fk - k0.to(torch.float32)
for i in range(colorwheel.size()[1]):
tmp = colorwheel[:, i]
col0 = tmp[k0 - 1]
col1 = tmp[k1 - 1]
col = (1 - f) * col0 + f * col1
idx = rad <= 1. / 255.
col[idx] = 1 - rad[idx] * (1 - col[idx])
notidx = (idx != 0)
col[notidx] *= 0.75
img[i, :, :] = col * (1 - nanIdx).to(torch.float32)
return img
def make_color_wheel():
RY, YG, GC, CB, BM, MR = (15, 6, 4, 11, 13, 6)
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG))
colorwheel[col:col + YG, 1] = 255
col += YG
# GC
colorwheel[col:col + GC, 1] = 255
colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB))
colorwheel[col:col + CB, 2] = 255
col += CB
# BM
colorwheel[col:col + BM, 2] = 255
colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col + MR, 0] = 255
return colorwheel
def pt_make_color_wheel():
RY, YG, GC, CB, BM, MR = (15, 6, 4, 11, 13, 6)
ncols = RY + YG + GC + CB + BM + MR
colorwheel = torch.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 1.
colorwheel[0:RY, 1] = torch.arange(0, RY, dtype=torch.float32) / RY
col += RY
# YG
colorwheel[col:col + YG, 0] = 1. - (torch.arange(0, YG, dtype=torch.float32) / YG)
colorwheel[col:col + YG, 1] = 1.
col += YG
# GC
colorwheel[col:col + GC, 1] = 1.
colorwheel[col:col + GC, 2] = torch.arange(0, GC, dtype=torch.float32) / GC
col += GC
# CB
colorwheel[col:col + CB, 1] = 1. - (torch.arange(0, CB, dtype=torch.float32) / CB)
colorwheel[col:col + CB, 2] = 1.
col += CB
# BM
colorwheel[col:col + BM, 2] = 1.
colorwheel[col:col + BM, 0] = torch.arange(0, BM, dtype=torch.float32) / BM
col += BM
# MR
colorwheel[col:col + MR, 2] = 1. - (torch.arange(0, MR, dtype=torch.float32) / MR)
colorwheel[col:col + MR, 0] = 1.
return colorwheel
def is_image_file(filename):
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
filename_lower = filename.lower()
return any(filename_lower.endswith(extension) for extension in IMG_EXTENSIONS)
def deprocess(img):
img = img.add_(1).div_(2)
return img
# get configs
def get_config(config):
with open(config, 'r') as stream:
return yaml.load(stream,Loader=yaml.Loader)
# Get model list for resume
def get_model_list(dirname, key, iteration=0):
if os.path.exists(dirname) is False:
return None
gen_models = [os.path.join(dirname, f) for f in os.listdir(dirname) if
os.path.isfile(os.path.join(dirname, f)) and key in f and ".pt" in f]
if gen_models is None:
return None
gen_models.sort()
if iteration == 0:
last_model_name = gen_models[-1]
else:
for model_name in gen_models:
if '{:0>8d}'.format(iteration) in model_name:
return model_name
raise ValueError('Not found models with this iteration')
return last_model_name
if __name__ == '__main__':
test_random_bbox()
mask = test_bbox2mask()
print(mask.shape)
import matplotlib.pyplot as plt
plt.imshow(mask, cmap='gray')
plt.show()
|