File size: 15,191 Bytes
063372b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
"""
AnyText: Multilingual Visual Text Generation And Editing
Paper: https://arxiv.org/abs/2311.03054
Code: https://github.com/tyxsspa/AnyText
Copyright (c) Alibaba, Inc. and its affiliates.
"""
import os
from pathlib import Path

from iopaint.model.utils import set_seed
from safetensors.torch import load_file

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import torch
import re
import numpy as np
import cv2
import einops
from PIL import ImageFont
from iopaint.model.anytext.cldm.model import create_model, load_state_dict
from iopaint.model.anytext.cldm.ddim_hacked import DDIMSampler
from iopaint.model.anytext.utils import (
    check_channels,
    draw_glyph,
    draw_glyph2,
)


BBOX_MAX_NUM = 8
PLACE_HOLDER = "*"
max_chars = 20

ANYTEXT_CFG = os.path.join(
    os.path.dirname(os.path.abspath(__file__)), "anytext_sd15.yaml"
)


def check_limits(tensor):
    float16_min = torch.finfo(torch.float16).min
    float16_max = torch.finfo(torch.float16).max

    # 检查张量中是否有值小于float16的最小值或大于float16的最大值
    is_below_min = (tensor < float16_min).any()
    is_above_max = (tensor > float16_max).any()

    return is_below_min or is_above_max


class AnyTextPipeline:
    def __init__(self, ckpt_path, font_path, device, use_fp16=True):
        self.cfg_path = ANYTEXT_CFG
        self.font_path = font_path
        self.use_fp16 = use_fp16
        self.device = device

        self.font = ImageFont.truetype(font_path, size=60)
        self.model = create_model(
            self.cfg_path,
            device=self.device,
            use_fp16=self.use_fp16,
        )
        if self.use_fp16:
            self.model = self.model.half()
        if Path(ckpt_path).suffix == ".safetensors":
            state_dict = load_file(ckpt_path, device="cpu")
        else:
            state_dict = load_state_dict(ckpt_path, location="cpu")
        self.model.load_state_dict(state_dict, strict=False)
        self.model = self.model.eval().to(self.device)
        self.ddim_sampler = DDIMSampler(self.model, device=self.device)

    def __call__(
        self,
        prompt: str,
        negative_prompt: str,
        image: np.ndarray,
        masked_image: np.ndarray,
        num_inference_steps: int,
        strength: float,
        guidance_scale: float,
        height: int,
        width: int,
        seed: int,
        sort_priority: str = "y",
        callback=None,
    ):
        """

        Args:
            prompt:
            negative_prompt:
            image:
            masked_image:
            num_inference_steps:
            strength:
            guidance_scale:
            height:
            width:
            seed:
            sort_priority: x: left-right, y: top-down

        Returns:
            result: list of images in numpy.ndarray format
            rst_code: 0: normal -1: error 1:warning
            rst_info: string of error or warning

        """
        set_seed(seed)
        str_warning = ""

        mode = "text-editing"
        revise_pos = False
        img_count = 1
        ddim_steps = num_inference_steps
        w = width
        h = height
        strength = strength
        cfg_scale = guidance_scale
        eta = 0.0

        prompt, texts = self.modify_prompt(prompt)
        if prompt is None and texts is None:
            return (
                None,
                -1,
                "You have input Chinese prompt but the translator is not loaded!",
                "",
            )
        n_lines = len(texts)
        if mode in ["text-generation", "gen"]:
            edit_image = np.ones((h, w, 3)) * 127.5  # empty mask image
        elif mode in ["text-editing", "edit"]:
            if masked_image is None or image is None:
                return (
                    None,
                    -1,
                    "Reference image and position image are needed for text editing!",
                    "",
                )
            if isinstance(image, str):
                image = cv2.imread(image)[..., ::-1]
                assert image is not None, f"Can't read ori_image image from{image}!"
            elif isinstance(image, torch.Tensor):
                image = image.cpu().numpy()
            else:
                assert isinstance(
                    image, np.ndarray
                ), f"Unknown format of ori_image: {type(image)}"
            edit_image = image.clip(1, 255)  # for mask reason
            edit_image = check_channels(edit_image)
            # edit_image = resize_image(
            #     edit_image, max_length=768
            # )  # make w h multiple of 64, resize if w or h > max_length
            h, w = edit_image.shape[:2]  # change h, w by input ref_img
        # preprocess pos_imgs(if numpy, make sure it's white pos in black bg)
        if masked_image is None:
            pos_imgs = np.zeros((w, h, 1))
        if isinstance(masked_image, str):
            masked_image = cv2.imread(masked_image)[..., ::-1]
            assert (
                masked_image is not None
            ), f"Can't read draw_pos image from{masked_image}!"
            pos_imgs = 255 - masked_image
        elif isinstance(masked_image, torch.Tensor):
            pos_imgs = masked_image.cpu().numpy()
        else:
            assert isinstance(
                masked_image, np.ndarray
            ), f"Unknown format of draw_pos: {type(masked_image)}"
            pos_imgs = 255 - masked_image
        pos_imgs = pos_imgs[..., 0:1]
        pos_imgs = cv2.convertScaleAbs(pos_imgs)
        _, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY)
        # seprate pos_imgs
        pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority)
        if len(pos_imgs) == 0:
            pos_imgs = [np.zeros((h, w, 1))]
        if len(pos_imgs) < n_lines:
            if n_lines == 1 and texts[0] == " ":
                pass  # text-to-image without text
            else:
                raise RuntimeError(
                    f"{n_lines} text line to draw from prompt, not enough mask area({len(pos_imgs)}) on images"
                )
        elif len(pos_imgs) > n_lines:
            str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt."
        # get pre_pos, poly_list, hint that needed for anytext
        pre_pos = []
        poly_list = []
        for input_pos in pos_imgs:
            if input_pos.mean() != 0:
                input_pos = (
                    input_pos[..., np.newaxis]
                    if len(input_pos.shape) == 2
                    else input_pos
                )
                poly, pos_img = self.find_polygon(input_pos)
                pre_pos += [pos_img / 255.0]
                poly_list += [poly]
            else:
                pre_pos += [np.zeros((h, w, 1))]
                poly_list += [None]
        np_hint = np.sum(pre_pos, axis=0).clip(0, 1)
        # prepare info dict
        info = {}
        info["glyphs"] = []
        info["gly_line"] = []
        info["positions"] = []
        info["n_lines"] = [len(texts)] * img_count
        gly_pos_imgs = []
        for i in range(len(texts)):
            text = texts[i]
            if len(text) > max_chars:
                str_warning = (
                    f'"{text}" length > max_chars: {max_chars}, will be cut off...'
                )
                text = text[:max_chars]
            gly_scale = 2
            if pre_pos[i].mean() != 0:
                gly_line = draw_glyph(self.font, text)
                glyphs = draw_glyph2(
                    self.font,
                    text,
                    poly_list[i],
                    scale=gly_scale,
                    width=w,
                    height=h,
                    add_space=False,
                )
                gly_pos_img = cv2.drawContours(
                    glyphs * 255, [poly_list[i] * gly_scale], 0, (255, 255, 255), 1
                )
                if revise_pos:
                    resize_gly = cv2.resize(
                        glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0])
                    )
                    new_pos = cv2.morphologyEx(
                        (resize_gly * 255).astype(np.uint8),
                        cv2.MORPH_CLOSE,
                        kernel=np.ones(
                            (resize_gly.shape[0] // 10, resize_gly.shape[1] // 10),
                            dtype=np.uint8,
                        ),
                        iterations=1,
                    )
                    new_pos = (
                        new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos
                    )
                    contours, _ = cv2.findContours(
                        new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
                    )
                    if len(contours) != 1:
                        str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..."
                    else:
                        rect = cv2.minAreaRect(contours[0])
                        poly = np.int0(cv2.boxPoints(rect))
                        pre_pos[i] = (
                            cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0
                        )
                        gly_pos_img = cv2.drawContours(
                            glyphs * 255, [poly * gly_scale], 0, (255, 255, 255), 1
                        )
                gly_pos_imgs += [gly_pos_img]  # for show
            else:
                glyphs = np.zeros((h * gly_scale, w * gly_scale, 1))
                gly_line = np.zeros((80, 512, 1))
                gly_pos_imgs += [
                    np.zeros((h * gly_scale, w * gly_scale, 1))
                ]  # for show
            pos = pre_pos[i]
            info["glyphs"] += [self.arr2tensor(glyphs, img_count)]
            info["gly_line"] += [self.arr2tensor(gly_line, img_count)]
            info["positions"] += [self.arr2tensor(pos, img_count)]
        # get masked_x
        masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint)
        masked_img = np.transpose(masked_img, (2, 0, 1))
        masked_img = torch.from_numpy(masked_img.copy()).float().to(self.device)
        if self.use_fp16:
            masked_img = masked_img.half()
        encoder_posterior = self.model.encode_first_stage(masked_img[None, ...])
        masked_x = self.model.get_first_stage_encoding(encoder_posterior).detach()
        if self.use_fp16:
            masked_x = masked_x.half()
        info["masked_x"] = torch.cat([masked_x for _ in range(img_count)], dim=0)

        hint = self.arr2tensor(np_hint, img_count)
        cond = self.model.get_learned_conditioning(
            dict(
                c_concat=[hint],
                c_crossattn=[[prompt] * img_count],
                text_info=info,
            )
        )
        un_cond = self.model.get_learned_conditioning(
            dict(
                c_concat=[hint],
                c_crossattn=[[negative_prompt] * img_count],
                text_info=info,
            )
        )
        shape = (4, h // 8, w // 8)
        self.model.control_scales = [strength] * 13
        samples, intermediates = self.ddim_sampler.sample(
            ddim_steps,
            img_count,
            shape,
            cond,
            verbose=False,
            eta=eta,
            unconditional_guidance_scale=cfg_scale,
            unconditional_conditioning=un_cond,
            callback=callback
        )
        if self.use_fp16:
            samples = samples.half()
        x_samples = self.model.decode_first_stage(samples)
        x_samples = (
            (einops.rearrange(x_samples, "b c h w -> b h w c") * 127.5 + 127.5)
            .cpu()
            .numpy()
            .clip(0, 255)
            .astype(np.uint8)
        )
        results = [x_samples[i] for i in range(img_count)]
        # if (
        #     mode == "edit" and False
        # ):  # replace backgound in text editing but not ideal yet
        #     results = [r * np_hint + edit_image * (1 - np_hint) for r in results]
        #     results = [r.clip(0, 255).astype(np.uint8) for r in results]
        # if len(gly_pos_imgs) > 0 and show_debug:
        #     glyph_bs = np.stack(gly_pos_imgs, axis=2)
        #     glyph_img = np.sum(glyph_bs, axis=2) * 255
        #     glyph_img = glyph_img.clip(0, 255).astype(np.uint8)
        #     results += [np.repeat(glyph_img, 3, axis=2)]
        rst_code = 1 if str_warning else 0
        return results, rst_code, str_warning

    def modify_prompt(self, prompt):
        prompt = prompt.replace("“", '"')
        prompt = prompt.replace("”", '"')
        p = '"(.*?)"'
        strs = re.findall(p, prompt)
        if len(strs) == 0:
            strs = [" "]
        else:
            for s in strs:
                prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1)
        # if self.is_chinese(prompt):
        #     if self.trans_pipe is None:
        #         return None, None
        #     old_prompt = prompt
        #     prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1]
        #     print(f"Translate: {old_prompt} --> {prompt}")
        return prompt, strs

    # def is_chinese(self, text):
    #     text = checker._clean_text(text)
    #     for char in text:
    #         cp = ord(char)
    #         if checker._is_chinese_char(cp):
    #             return True
    #     return False

    def separate_pos_imgs(self, img, sort_priority, gap=102):
        num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img)
        components = []
        for label in range(1, num_labels):
            component = np.zeros_like(img)
            component[labels == label] = 255
            components.append((component, centroids[label]))
        if sort_priority == "y":
            fir, sec = 1, 0  # top-down first
        elif sort_priority == "x":
            fir, sec = 0, 1  # left-right first
        components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap))
        sorted_components = [c[0] for c in components]
        return sorted_components

    def find_polygon(self, image, min_rect=False):
        contours, hierarchy = cv2.findContours(
            image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
        )
        max_contour = max(contours, key=cv2.contourArea)  # get contour with max area
        if min_rect:
            # get minimum enclosing rectangle
            rect = cv2.minAreaRect(max_contour)
            poly = np.int0(cv2.boxPoints(rect))
        else:
            # get approximate polygon
            epsilon = 0.01 * cv2.arcLength(max_contour, True)
            poly = cv2.approxPolyDP(max_contour, epsilon, True)
            n, _, xy = poly.shape
            poly = poly.reshape(n, xy)
        cv2.drawContours(image, [poly], -1, 255, -1)
        return poly, image

    def arr2tensor(self, arr, bs):
        arr = np.transpose(arr, (2, 0, 1))
        _arr = torch.from_numpy(arr.copy()).float().to(self.device)
        if self.use_fp16:
            _arr = _arr.half()
        _arr = torch.stack([_arr for _ in range(bs)], dim=0)
        return _arr