File size: 28,531 Bytes
89c278d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
import os
from pathlib import Path
import einops
import torch
import torch as th
import torch.nn as nn
import copy
from easydict import EasyDict as edict
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from einops import rearrange, repeat
from iopaint.model.anytext.ldm.modules.attention import SpatialTransformer
from iopaint.model.anytext.ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from iopaint.model.anytext.ldm.models.diffusion.ddpm import LatentDiffusion
from iopaint.model.anytext.ldm.util import log_txt_as_img, exists, instantiate_from_config
from iopaint.model.anytext.ldm.models.diffusion.ddim import DDIMSampler
from iopaint.model.anytext.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from .recognizer import TextRecognizer, create_predictor
CURRENT_DIR = Path(os.path.dirname(os.path.abspath(__file__)))
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class ControlledUnetModel(UNetModel):
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
hs = []
with torch.no_grad():
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
if self.use_fp16:
t_emb = t_emb.half()
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
if control is not None:
h += control.pop()
for i, module in enumerate(self.output_blocks):
if only_mid_control or control is None:
h = torch.cat([h, hs.pop()], dim=1)
else:
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
return self.out(h)
class ControlNet(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
glyph_channels,
position_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.dims = dims
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.use_fp16 = use_fp16
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
self.glyph_block = TimestepEmbedSequential(
conv_nd(dims, glyph_channels, 8, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 8, 8, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 8, 16, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 96, 96, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
nn.SiLU(),
)
self.position_block = TimestepEmbedSequential(
conv_nd(dims, position_channels, 8, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 8, 8, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 8, 16, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 64, 3, padding=1, stride=2),
nn.SiLU(),
)
self.fuse_block = zero_module(conv_nd(dims, 256+64+4, model_channels, 3, padding=1))
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self.middle_block_out = self.make_zero_conv(ch)
self._feature_size += ch
def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def forward(self, x, hint, text_info, timesteps, context, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
if self.use_fp16:
t_emb = t_emb.half()
emb = self.time_embed(t_emb)
# guided_hint from text_info
B, C, H, W = x.shape
glyphs = torch.cat(text_info['glyphs'], dim=1).sum(dim=1, keepdim=True)
positions = torch.cat(text_info['positions'], dim=1).sum(dim=1, keepdim=True)
enc_glyph = self.glyph_block(glyphs, emb, context)
enc_pos = self.position_block(positions, emb, context)
guided_hint = self.fuse_block(torch.cat([enc_glyph, enc_pos, text_info['masked_x']], dim=1))
outs = []
h = x.type(self.dtype)
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
return outs
class ControlLDM(LatentDiffusion):
def __init__(self, control_stage_config, control_key, glyph_key, position_key, only_mid_control, loss_alpha=0, loss_beta=0, with_step_weight=False, use_vae_upsample=False, latin_weight=1.0, embedding_manager_config=None, *args, **kwargs):
self.use_fp16 = kwargs.pop('use_fp16', False)
super().__init__(*args, **kwargs)
self.control_model = instantiate_from_config(control_stage_config)
self.control_key = control_key
self.glyph_key = glyph_key
self.position_key = position_key
self.only_mid_control = only_mid_control
self.control_scales = [1.0] * 13
self.loss_alpha = loss_alpha
self.loss_beta = loss_beta
self.with_step_weight = with_step_weight
self.use_vae_upsample = use_vae_upsample
self.latin_weight = latin_weight
if embedding_manager_config is not None and embedding_manager_config.params.valid:
self.embedding_manager = self.instantiate_embedding_manager(embedding_manager_config, self.cond_stage_model)
for param in self.embedding_manager.embedding_parameters():
param.requires_grad = True
else:
self.embedding_manager = None
if self.loss_alpha > 0 or self.loss_beta > 0 or self.embedding_manager:
if embedding_manager_config.params.emb_type == 'ocr':
self.text_predictor = create_predictor().eval()
args = edict()
args.rec_image_shape = "3, 48, 320"
args.rec_batch_num = 6
args.rec_char_dict_path = str(CURRENT_DIR.parent / "ocr_recog" / "ppocr_keys_v1.txt")
args.use_fp16 = self.use_fp16
self.cn_recognizer = TextRecognizer(args, self.text_predictor)
for param in self.text_predictor.parameters():
param.requires_grad = False
if self.embedding_manager:
self.embedding_manager.recog = self.cn_recognizer
@torch.no_grad()
def get_input(self, batch, k, bs=None, *args, **kwargs):
if self.embedding_manager is None: # fill in full caption
self.fill_caption(batch)
x, c, mx = super().get_input(batch, self.first_stage_key, mask_k='masked_img', *args, **kwargs)
control = batch[self.control_key] # for log_images and loss_alpha, not real control
if bs is not None:
control = control[:bs]
control = control.to(self.device)
control = einops.rearrange(control, 'b h w c -> b c h w')
control = control.to(memory_format=torch.contiguous_format).float()
inv_mask = batch['inv_mask']
if bs is not None:
inv_mask = inv_mask[:bs]
inv_mask = inv_mask.to(self.device)
inv_mask = einops.rearrange(inv_mask, 'b h w c -> b c h w')
inv_mask = inv_mask.to(memory_format=torch.contiguous_format).float()
glyphs = batch[self.glyph_key]
gly_line = batch['gly_line']
positions = batch[self.position_key]
n_lines = batch['n_lines']
language = batch['language']
texts = batch['texts']
assert len(glyphs) == len(positions)
for i in range(len(glyphs)):
if bs is not None:
glyphs[i] = glyphs[i][:bs]
gly_line[i] = gly_line[i][:bs]
positions[i] = positions[i][:bs]
n_lines = n_lines[:bs]
glyphs[i] = glyphs[i].to(self.device)
gly_line[i] = gly_line[i].to(self.device)
positions[i] = positions[i].to(self.device)
glyphs[i] = einops.rearrange(glyphs[i], 'b h w c -> b c h w')
gly_line[i] = einops.rearrange(gly_line[i], 'b h w c -> b c h w')
positions[i] = einops.rearrange(positions[i], 'b h w c -> b c h w')
glyphs[i] = glyphs[i].to(memory_format=torch.contiguous_format).float()
gly_line[i] = gly_line[i].to(memory_format=torch.contiguous_format).float()
positions[i] = positions[i].to(memory_format=torch.contiguous_format).float()
info = {}
info['glyphs'] = glyphs
info['positions'] = positions
info['n_lines'] = n_lines
info['language'] = language
info['texts'] = texts
info['img'] = batch['img'] # nhwc, (-1,1)
info['masked_x'] = mx
info['gly_line'] = gly_line
info['inv_mask'] = inv_mask
return x, dict(c_crossattn=[c], c_concat=[control], text_info=info)
def apply_model(self, x_noisy, t, cond, *args, **kwargs):
assert isinstance(cond, dict)
diffusion_model = self.model.diffusion_model
_cond = torch.cat(cond['c_crossattn'], 1)
_hint = torch.cat(cond['c_concat'], 1)
if self.use_fp16:
x_noisy = x_noisy.half()
control = self.control_model(x=x_noisy, timesteps=t, context=_cond, hint=_hint, text_info=cond['text_info'])
control = [c * scale for c, scale in zip(control, self.control_scales)]
eps = diffusion_model(x=x_noisy, timesteps=t, context=_cond, control=control, only_mid_control=self.only_mid_control)
return eps
def instantiate_embedding_manager(self, config, embedder):
model = instantiate_from_config(config, embedder=embedder)
return model
@torch.no_grad()
def get_unconditional_conditioning(self, N):
return self.get_learned_conditioning(dict(c_crossattn=[[""] * N], text_info=None))
def get_learned_conditioning(self, c):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
if self.embedding_manager is not None and c['text_info'] is not None:
self.embedding_manager.encode_text(c['text_info'])
if isinstance(c, dict):
cond_txt = c['c_crossattn'][0]
else:
cond_txt = c
if self.embedding_manager is not None:
cond_txt = self.cond_stage_model.encode(cond_txt, embedding_manager=self.embedding_manager)
else:
cond_txt = self.cond_stage_model.encode(cond_txt)
if isinstance(c, dict):
c['c_crossattn'][0] = cond_txt
else:
c = cond_txt
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
return c
def fill_caption(self, batch, place_holder='*'):
bs = len(batch['n_lines'])
cond_list = copy.deepcopy(batch[self.cond_stage_key])
for i in range(bs):
n_lines = batch['n_lines'][i]
if n_lines == 0:
continue
cur_cap = cond_list[i]
for j in range(n_lines):
r_txt = batch['texts'][j][i]
cur_cap = cur_cap.replace(place_holder, f'"{r_txt}"', 1)
cond_list[i] = cur_cap
batch[self.cond_stage_key] = cond_list
@torch.no_grad()
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
use_ema_scope=True,
**kwargs):
use_ddim = ddim_steps is not None
log = dict()
z, c = self.get_input(batch, self.first_stage_key, bs=N)
if self.cond_stage_trainable:
with torch.no_grad():
c = self.get_learned_conditioning(c)
c_crossattn = c["c_crossattn"][0][:N]
c_cat = c["c_concat"][0][:N]
text_info = c["text_info"]
text_info['glyphs'] = [i[:N] for i in text_info['glyphs']]
text_info['gly_line'] = [i[:N] for i in text_info['gly_line']]
text_info['positions'] = [i[:N] for i in text_info['positions']]
text_info['n_lines'] = text_info['n_lines'][:N]
text_info['masked_x'] = text_info['masked_x'][:N]
text_info['img'] = text_info['img'][:N]
N = min(z.shape[0], N)
n_row = min(z.shape[0], n_row)
log["reconstruction"] = self.decode_first_stage(z)
log["masked_image"] = self.decode_first_stage(text_info['masked_x'])
log["control"] = c_cat * 2.0 - 1.0
log["img"] = text_info['img'].permute(0, 3, 1, 2) # log source image if needed
# get glyph
glyph_bs = torch.stack(text_info['glyphs'])
glyph_bs = torch.sum(glyph_bs, dim=0) * 2.0 - 1.0
log["glyph"] = torch.nn.functional.interpolate(glyph_bs, size=(512, 512), mode='bilinear', align_corners=True,)
# fill caption
if not self.embedding_manager:
self.fill_caption(batch)
captions = batch[self.cond_stage_key]
log["conditioning"] = log_txt_as_img((512, 512), captions, size=16)
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
log["diffusion_row"] = diffusion_grid
if sample:
# get denoise row
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c], "text_info": text_info},
batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta)
x_samples = self.decode_first_stage(samples)
log["samples"] = x_samples
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log["denoise_row"] = denoise_grid
if unconditional_guidance_scale > 1.0:
uc_cross = self.get_unconditional_conditioning(N)
uc_cat = c_cat # torch.zeros_like(c_cat)
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross['c_crossattn'][0]], "text_info": text_info}
samples_cfg, tmps = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c_crossattn], "text_info": text_info},
batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc_full,
)
x_samples_cfg = self.decode_first_stage(samples_cfg)
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
pred_x0 = False # wether log pred_x0
if pred_x0:
for idx in range(len(tmps['pred_x0'])):
pred_x0 = self.decode_first_stage(tmps['pred_x0'][idx])
log[f"pred_x0_{tmps['index'][idx]}"] = pred_x0
return log
@torch.no_grad()
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
ddim_sampler = DDIMSampler(self)
b, c, h, w = cond["c_concat"][0].shape
shape = (self.channels, h // 8, w // 8)
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, log_every_t=5, **kwargs)
return samples, intermediates
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.control_model.parameters())
if self.embedding_manager:
params += list(self.embedding_manager.embedding_parameters())
if not self.sd_locked:
# params += list(self.model.diffusion_model.input_blocks.parameters())
# params += list(self.model.diffusion_model.middle_block.parameters())
params += list(self.model.diffusion_model.output_blocks.parameters())
params += list(self.model.diffusion_model.out.parameters())
if self.unlockKV:
nCount = 0
for name, param in self.model.diffusion_model.named_parameters():
if 'attn2.to_k' in name or 'attn2.to_v' in name:
params += [param]
nCount += 1
print(f'Cross attention is unlocked, and {nCount} Wk or Wv are added to potimizers!!!')
opt = torch.optim.AdamW(params, lr=lr)
return opt
def low_vram_shift(self, is_diffusing):
if is_diffusing:
self.model = self.model.cuda()
self.control_model = self.control_model.cuda()
self.first_stage_model = self.first_stage_model.cpu()
self.cond_stage_model = self.cond_stage_model.cpu()
else:
self.model = self.model.cpu()
self.control_model = self.control_model.cpu()
self.first_stage_model = self.first_stage_model.cuda()
self.cond_stage_model = self.cond_stage_model.cuda()
|