File size: 1,260 Bytes
e041d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from torch import nn


class CTCHead(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels=6625,
                 fc_decay=0.0004,
                 mid_channels=None,
                 return_feats=False,
                 **kwargs):
        super(CTCHead, self).__init__()
        if mid_channels is None:
            self.fc = nn.Linear(
                in_channels,
                out_channels,
                bias=True,)
        else:
            self.fc1 = nn.Linear(
                in_channels,
                mid_channels,
                bias=True,
            )
            self.fc2 = nn.Linear(
                mid_channels,
                out_channels,
                bias=True,
            )

        self.out_channels = out_channels
        self.mid_channels = mid_channels
        self.return_feats = return_feats

    def forward(self, x, labels=None):
        if self.mid_channels is None:
            predicts = self.fc(x)
        else:
            x = self.fc1(x)
            predicts = self.fc2(x)

        if self.return_feats:
            result = dict()
            result['ctc'] = predicts
            result['ctc_neck'] = x
        else:
            result = predicts

        return result