File size: 1,260 Bytes
e041d7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
from torch import nn
class CTCHead(nn.Module):
def __init__(self,
in_channels,
out_channels=6625,
fc_decay=0.0004,
mid_channels=None,
return_feats=False,
**kwargs):
super(CTCHead, self).__init__()
if mid_channels is None:
self.fc = nn.Linear(
in_channels,
out_channels,
bias=True,)
else:
self.fc1 = nn.Linear(
in_channels,
mid_channels,
bias=True,
)
self.fc2 = nn.Linear(
mid_channels,
out_channels,
bias=True,
)
self.out_channels = out_channels
self.mid_channels = mid_channels
self.return_feats = return_feats
def forward(self, x, labels=None):
if self.mid_channels is None:
predicts = self.fc(x)
else:
x = self.fc1(x)
predicts = self.fc2(x)
if self.return_feats:
result = dict()
result['ctc'] = predicts
result['ctc_neck'] = x
else:
result = predicts
return result
|