|
import PIL.Image |
|
import cv2 |
|
import torch |
|
from diffusers import ControlNetModel |
|
from loguru import logger |
|
from iopaint.schema import InpaintRequest, ModelType |
|
|
|
from .base import DiffusionInpaintModel |
|
from .helper.controlnet_preprocess import ( |
|
make_canny_control_image, |
|
make_openpose_control_image, |
|
make_depth_control_image, |
|
make_inpaint_control_image, |
|
) |
|
from .helper.cpu_text_encoder import CPUTextEncoderWrapper |
|
from .original_sd_configs import get_config_files |
|
from .utils import ( |
|
get_scheduler, |
|
handle_from_pretrained_exceptions, |
|
get_torch_dtype, |
|
enable_low_mem, |
|
is_local_files_only, |
|
) |
|
|
|
|
|
class ControlNet(DiffusionInpaintModel): |
|
name = "controlnet" |
|
pad_mod = 8 |
|
min_size = 512 |
|
|
|
@property |
|
def lcm_lora_id(self): |
|
if self.model_info.model_type in [ |
|
ModelType.DIFFUSERS_SD, |
|
ModelType.DIFFUSERS_SD_INPAINT, |
|
]: |
|
return "latent-consistency/lcm-lora-sdv1-5" |
|
if self.model_info.model_type in [ |
|
ModelType.DIFFUSERS_SDXL, |
|
ModelType.DIFFUSERS_SDXL_INPAINT, |
|
]: |
|
return "latent-consistency/lcm-lora-sdxl" |
|
raise NotImplementedError(f"Unsupported controlnet lcm model {self.model_info}") |
|
|
|
def init_model(self, device: torch.device, **kwargs): |
|
model_info = kwargs["model_info"] |
|
controlnet_method = kwargs["controlnet_method"] |
|
|
|
self.model_info = model_info |
|
self.controlnet_method = controlnet_method |
|
|
|
model_kwargs = { |
|
**kwargs.get("pipe_components", {}), |
|
"local_files_only": is_local_files_only(**kwargs), |
|
} |
|
self.local_files_only = model_kwargs["local_files_only"] |
|
|
|
disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get( |
|
"cpu_offload", False |
|
) |
|
if disable_nsfw_checker: |
|
logger.info("Disable Stable Diffusion Model NSFW checker") |
|
model_kwargs.update( |
|
dict( |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker=False, |
|
) |
|
) |
|
|
|
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False)) |
|
self.torch_dtype = torch_dtype |
|
|
|
if model_info.model_type in [ |
|
ModelType.DIFFUSERS_SD, |
|
ModelType.DIFFUSERS_SD_INPAINT, |
|
]: |
|
from diffusers import ( |
|
StableDiffusionControlNetInpaintPipeline as PipeClass, |
|
) |
|
elif model_info.model_type in [ |
|
ModelType.DIFFUSERS_SDXL, |
|
ModelType.DIFFUSERS_SDXL_INPAINT, |
|
]: |
|
from diffusers import ( |
|
StableDiffusionXLControlNetInpaintPipeline as PipeClass, |
|
) |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
pretrained_model_name_or_path=controlnet_method, |
|
resume_download=True, |
|
local_files_only=model_kwargs["local_files_only"], |
|
torch_dtype=self.torch_dtype, |
|
) |
|
if model_info.is_single_file_diffusers: |
|
if self.model_info.model_type == ModelType.DIFFUSERS_SD: |
|
model_kwargs["num_in_channels"] = 4 |
|
else: |
|
model_kwargs["num_in_channels"] = 9 |
|
|
|
self.model = PipeClass.from_single_file( |
|
model_info.path, |
|
controlnet=controlnet, |
|
load_safety_checker=not disable_nsfw_checker, |
|
torch_dtype=torch_dtype, |
|
config_files=get_config_files(), |
|
**model_kwargs, |
|
) |
|
else: |
|
self.model = handle_from_pretrained_exceptions( |
|
PipeClass.from_pretrained, |
|
pretrained_model_name_or_path=model_info.path, |
|
controlnet=controlnet, |
|
variant="fp16", |
|
torch_dtype=torch_dtype, |
|
**model_kwargs, |
|
) |
|
|
|
enable_low_mem(self.model, kwargs.get("low_mem", False)) |
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu: |
|
logger.info("Enable sequential cpu offload") |
|
self.model.enable_sequential_cpu_offload(gpu_id=0) |
|
else: |
|
self.model = self.model.to(device) |
|
if kwargs["sd_cpu_textencoder"]: |
|
logger.info("Run Stable Diffusion TextEncoder on CPU") |
|
self.model.text_encoder = CPUTextEncoderWrapper( |
|
self.model.text_encoder, torch_dtype |
|
) |
|
|
|
self.callback = kwargs.pop("callback", None) |
|
|
|
def switch_controlnet_method(self, new_method: str): |
|
self.controlnet_method = new_method |
|
controlnet = ControlNetModel.from_pretrained( |
|
new_method, |
|
resume_download=True, |
|
local_files_only=self.local_files_only, |
|
torch_dtype=self.torch_dtype, |
|
).to(self.model.device) |
|
self.model.controlnet = controlnet |
|
|
|
def _get_control_image(self, image, mask): |
|
if "canny" in self.controlnet_method: |
|
control_image = make_canny_control_image(image) |
|
elif "openpose" in self.controlnet_method: |
|
control_image = make_openpose_control_image(image) |
|
elif "depth" in self.controlnet_method: |
|
control_image = make_depth_control_image(image) |
|
elif "inpaint" in self.controlnet_method: |
|
control_image = make_inpaint_control_image(image, mask) |
|
else: |
|
raise NotImplementedError(f"{self.controlnet_method} not implemented") |
|
return control_image |
|
|
|
def forward(self, image, mask, config: InpaintRequest): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
return: BGR IMAGE |
|
""" |
|
scheduler_config = self.model.scheduler.config |
|
scheduler = get_scheduler(config.sd_sampler, scheduler_config) |
|
self.model.scheduler = scheduler |
|
|
|
img_h, img_w = image.shape[:2] |
|
control_image = self._get_control_image(image, mask) |
|
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L") |
|
image = PIL.Image.fromarray(image) |
|
|
|
output = self.model( |
|
image=image, |
|
mask_image=mask_image, |
|
control_image=control_image, |
|
prompt=config.prompt, |
|
negative_prompt=config.negative_prompt, |
|
num_inference_steps=config.sd_steps, |
|
guidance_scale=config.sd_guidance_scale, |
|
output_type="np", |
|
callback_on_step_end=self.callback, |
|
height=img_h, |
|
width=img_w, |
|
generator=torch.manual_seed(config.sd_seed), |
|
controlnet_conditioning_scale=config.controlnet_conditioning_scale, |
|
).images[0] |
|
|
|
output = (output * 255).round().astype("uint8") |
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return output |
|
|