|
import PIL.Image |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
from iopaint.const import KANDINSKY22_NAME |
|
from .base import DiffusionInpaintModel |
|
from iopaint.schema import InpaintRequest |
|
from .utils import get_torch_dtype, enable_low_mem, is_local_files_only |
|
|
|
|
|
class Kandinsky(DiffusionInpaintModel): |
|
pad_mod = 64 |
|
min_size = 512 |
|
|
|
def init_model(self, device: torch.device, **kwargs): |
|
from diffusers import AutoPipelineForInpainting |
|
|
|
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False)) |
|
|
|
model_kwargs = { |
|
"torch_dtype": torch_dtype, |
|
"local_files_only": is_local_files_only(**kwargs), |
|
} |
|
self.model = AutoPipelineForInpainting.from_pretrained( |
|
self.name, **model_kwargs |
|
).to(device) |
|
enable_low_mem(self.model, kwargs.get("low_mem", False)) |
|
|
|
self.callback = kwargs.pop("callback", None) |
|
|
|
def forward(self, image, mask, config: InpaintRequest): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
return: BGR IMAGE |
|
""" |
|
self.set_scheduler(config) |
|
|
|
generator = torch.manual_seed(config.sd_seed) |
|
mask = mask.astype(np.float32) / 255 |
|
img_h, img_w = image.shape[:2] |
|
|
|
|
|
output = self.model( |
|
prompt=config.prompt, |
|
negative_prompt=config.negative_prompt, |
|
image=PIL.Image.fromarray(image), |
|
mask_image=mask[:, :, 0], |
|
height=img_h, |
|
width=img_w, |
|
num_inference_steps=config.sd_steps, |
|
guidance_scale=config.sd_guidance_scale, |
|
output_type="np", |
|
callback_on_step_end=self.callback, |
|
generator=generator, |
|
).images[0] |
|
|
|
output = (output * 255).round().astype("uint8") |
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return output |
|
|
|
|
|
class Kandinsky22(Kandinsky): |
|
name = KANDINSKY22_NAME |
|
|