|
|
|
import cv2 |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
import numpy as np |
|
from torchvision.transforms.functional import normalize |
|
|
|
|
|
class REBNCONV(nn.Module): |
|
def __init__(self, in_ch=3, out_ch=3, dirate=1, stride=1): |
|
super(REBNCONV, self).__init__() |
|
|
|
self.conv_s1 = nn.Conv2d( |
|
in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate, stride=stride |
|
) |
|
self.bn_s1 = nn.BatchNorm2d(out_ch) |
|
self.relu_s1 = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
hx = x |
|
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx))) |
|
|
|
return xout |
|
|
|
|
|
|
|
def _upsample_like(src, tar): |
|
src = F.interpolate(src, size=tar.shape[2:], mode="bilinear") |
|
|
|
return src |
|
|
|
|
|
|
|
class RSU7(nn.Module): |
|
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512): |
|
super(RSU7, self).__init__() |
|
|
|
self.in_ch = in_ch |
|
self.mid_ch = mid_ch |
|
self.out_ch = out_ch |
|
|
|
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) |
|
|
|
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) |
|
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
|
|
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2) |
|
|
|
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.shape |
|
|
|
hx = x |
|
hxin = self.rebnconvin(hx) |
|
|
|
hx1 = self.rebnconv1(hxin) |
|
hx = self.pool1(hx1) |
|
|
|
hx2 = self.rebnconv2(hx) |
|
hx = self.pool2(hx2) |
|
|
|
hx3 = self.rebnconv3(hx) |
|
hx = self.pool3(hx3) |
|
|
|
hx4 = self.rebnconv4(hx) |
|
hx = self.pool4(hx4) |
|
|
|
hx5 = self.rebnconv5(hx) |
|
hx = self.pool5(hx5) |
|
|
|
hx6 = self.rebnconv6(hx) |
|
|
|
hx7 = self.rebnconv7(hx6) |
|
|
|
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1)) |
|
hx6dup = _upsample_like(hx6d, hx5) |
|
|
|
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1)) |
|
hx5dup = _upsample_like(hx5d, hx4) |
|
|
|
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) |
|
hx4dup = _upsample_like(hx4d, hx3) |
|
|
|
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) |
|
hx3dup = _upsample_like(hx3d, hx2) |
|
|
|
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) |
|
hx2dup = _upsample_like(hx2d, hx1) |
|
|
|
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) |
|
|
|
return hx1d + hxin |
|
|
|
|
|
|
|
class RSU6(nn.Module): |
|
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): |
|
super(RSU6, self).__init__() |
|
|
|
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) |
|
|
|
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) |
|
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
|
|
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2) |
|
|
|
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) |
|
|
|
def forward(self, x): |
|
hx = x |
|
|
|
hxin = self.rebnconvin(hx) |
|
|
|
hx1 = self.rebnconv1(hxin) |
|
hx = self.pool1(hx1) |
|
|
|
hx2 = self.rebnconv2(hx) |
|
hx = self.pool2(hx2) |
|
|
|
hx3 = self.rebnconv3(hx) |
|
hx = self.pool3(hx3) |
|
|
|
hx4 = self.rebnconv4(hx) |
|
hx = self.pool4(hx4) |
|
|
|
hx5 = self.rebnconv5(hx) |
|
|
|
hx6 = self.rebnconv6(hx5) |
|
|
|
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1)) |
|
hx5dup = _upsample_like(hx5d, hx4) |
|
|
|
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) |
|
hx4dup = _upsample_like(hx4d, hx3) |
|
|
|
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) |
|
hx3dup = _upsample_like(hx3d, hx2) |
|
|
|
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) |
|
hx2dup = _upsample_like(hx2d, hx1) |
|
|
|
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) |
|
|
|
return hx1d + hxin |
|
|
|
|
|
|
|
class RSU5(nn.Module): |
|
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): |
|
super(RSU5, self).__init__() |
|
|
|
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) |
|
|
|
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) |
|
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
|
|
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2) |
|
|
|
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) |
|
|
|
def forward(self, x): |
|
hx = x |
|
|
|
hxin = self.rebnconvin(hx) |
|
|
|
hx1 = self.rebnconv1(hxin) |
|
hx = self.pool1(hx1) |
|
|
|
hx2 = self.rebnconv2(hx) |
|
hx = self.pool2(hx2) |
|
|
|
hx3 = self.rebnconv3(hx) |
|
hx = self.pool3(hx3) |
|
|
|
hx4 = self.rebnconv4(hx) |
|
|
|
hx5 = self.rebnconv5(hx4) |
|
|
|
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1)) |
|
hx4dup = _upsample_like(hx4d, hx3) |
|
|
|
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) |
|
hx3dup = _upsample_like(hx3d, hx2) |
|
|
|
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) |
|
hx2dup = _upsample_like(hx2d, hx1) |
|
|
|
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) |
|
|
|
return hx1d + hxin |
|
|
|
|
|
|
|
class RSU4(nn.Module): |
|
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): |
|
super(RSU4, self).__init__() |
|
|
|
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) |
|
|
|
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) |
|
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) |
|
|
|
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2) |
|
|
|
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) |
|
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) |
|
|
|
def forward(self, x): |
|
hx = x |
|
|
|
hxin = self.rebnconvin(hx) |
|
|
|
hx1 = self.rebnconv1(hxin) |
|
hx = self.pool1(hx1) |
|
|
|
hx2 = self.rebnconv2(hx) |
|
hx = self.pool2(hx2) |
|
|
|
hx3 = self.rebnconv3(hx) |
|
|
|
hx4 = self.rebnconv4(hx3) |
|
|
|
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) |
|
hx3dup = _upsample_like(hx3d, hx2) |
|
|
|
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) |
|
hx2dup = _upsample_like(hx2d, hx1) |
|
|
|
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) |
|
|
|
return hx1d + hxin |
|
|
|
|
|
|
|
class RSU4F(nn.Module): |
|
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): |
|
super(RSU4F, self).__init__() |
|
|
|
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) |
|
|
|
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) |
|
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2) |
|
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4) |
|
|
|
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8) |
|
|
|
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4) |
|
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2) |
|
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) |
|
|
|
def forward(self, x): |
|
hx = x |
|
|
|
hxin = self.rebnconvin(hx) |
|
|
|
hx1 = self.rebnconv1(hxin) |
|
hx2 = self.rebnconv2(hx1) |
|
hx3 = self.rebnconv3(hx2) |
|
|
|
hx4 = self.rebnconv4(hx3) |
|
|
|
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) |
|
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1)) |
|
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1)) |
|
|
|
return hx1d + hxin |
|
|
|
|
|
class myrebnconv(nn.Module): |
|
def __init__( |
|
self, |
|
in_ch=3, |
|
out_ch=1, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
dilation=1, |
|
groups=1, |
|
): |
|
super(myrebnconv, self).__init__() |
|
|
|
self.conv = nn.Conv2d( |
|
in_ch, |
|
out_ch, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups, |
|
) |
|
self.bn = nn.BatchNorm2d(out_ch) |
|
self.rl = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
return self.rl(self.bn(self.conv(x))) |
|
|
|
|
|
class BriaRMBG(nn.Module): |
|
def __init__(self, in_ch=3, out_ch=1): |
|
super(BriaRMBG, self).__init__() |
|
|
|
self.conv_in = nn.Conv2d(in_ch, 64, 3, stride=2, padding=1) |
|
self.pool_in = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.stage1 = RSU7(64, 32, 64) |
|
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.stage2 = RSU6(64, 32, 128) |
|
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.stage3 = RSU5(128, 64, 256) |
|
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.stage4 = RSU4(256, 128, 512) |
|
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.stage5 = RSU4F(512, 256, 512) |
|
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.stage6 = RSU4F(512, 256, 512) |
|
|
|
|
|
self.stage5d = RSU4F(1024, 256, 512) |
|
self.stage4d = RSU4(1024, 128, 256) |
|
self.stage3d = RSU5(512, 64, 128) |
|
self.stage2d = RSU6(256, 32, 64) |
|
self.stage1d = RSU7(128, 16, 64) |
|
|
|
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) |
|
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) |
|
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) |
|
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) |
|
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) |
|
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) |
|
|
|
|
|
|
|
def forward(self, x): |
|
hx = x |
|
|
|
hxin = self.conv_in(hx) |
|
|
|
|
|
|
|
hx1 = self.stage1(hxin) |
|
hx = self.pool12(hx1) |
|
|
|
|
|
hx2 = self.stage2(hx) |
|
hx = self.pool23(hx2) |
|
|
|
|
|
hx3 = self.stage3(hx) |
|
hx = self.pool34(hx3) |
|
|
|
|
|
hx4 = self.stage4(hx) |
|
hx = self.pool45(hx4) |
|
|
|
|
|
hx5 = self.stage5(hx) |
|
hx = self.pool56(hx5) |
|
|
|
|
|
hx6 = self.stage6(hx) |
|
hx6up = _upsample_like(hx6, hx5) |
|
|
|
|
|
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) |
|
hx5dup = _upsample_like(hx5d, hx4) |
|
|
|
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) |
|
hx4dup = _upsample_like(hx4d, hx3) |
|
|
|
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) |
|
hx3dup = _upsample_like(hx3d, hx2) |
|
|
|
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) |
|
hx2dup = _upsample_like(hx2d, hx1) |
|
|
|
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) |
|
|
|
|
|
d1 = self.side1(hx1d) |
|
d1 = _upsample_like(d1, x) |
|
|
|
d2 = self.side2(hx2d) |
|
d2 = _upsample_like(d2, x) |
|
|
|
d3 = self.side3(hx3d) |
|
d3 = _upsample_like(d3, x) |
|
|
|
d4 = self.side4(hx4d) |
|
d4 = _upsample_like(d4, x) |
|
|
|
d5 = self.side5(hx5d) |
|
d5 = _upsample_like(d5, x) |
|
|
|
d6 = self.side6(hx6) |
|
d6 = _upsample_like(d6, x) |
|
|
|
return [ |
|
F.sigmoid(d1), |
|
F.sigmoid(d2), |
|
F.sigmoid(d3), |
|
F.sigmoid(d4), |
|
F.sigmoid(d5), |
|
F.sigmoid(d6), |
|
], [hx1d, hx2d, hx3d, hx4d, hx5d, hx6] |
|
|
|
|
|
def resize_image(image): |
|
image = image.convert("RGB") |
|
model_input_size = (1024, 1024) |
|
image = image.resize(model_input_size, Image.BILINEAR) |
|
return image |
|
|
|
|
|
def create_briarmbg_session(): |
|
from huggingface_hub import hf_hub_download |
|
|
|
net = BriaRMBG() |
|
model_path = hf_hub_download("briaai/RMBG-1.4", "model.pth") |
|
net.load_state_dict(torch.load(model_path, map_location="cpu")) |
|
net.eval() |
|
return net |
|
|
|
|
|
def briarmbg_process(bgr_np_image, session, only_mask=False): |
|
|
|
orig_bgr_image = Image.fromarray(bgr_np_image) |
|
w, h = orig_im_size = orig_bgr_image.size |
|
image = resize_image(orig_bgr_image) |
|
im_np = np.array(image) |
|
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) |
|
im_tensor = torch.unsqueeze(im_tensor, 0) |
|
im_tensor = torch.divide(im_tensor, 255.0) |
|
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) |
|
|
|
result = session(im_tensor) |
|
|
|
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result - mi) / (ma - mi) |
|
|
|
im_array = (result * 255).cpu().data.numpy().astype(np.uint8) |
|
|
|
mask = np.squeeze(im_array) |
|
if only_mask: |
|
return mask |
|
|
|
pil_im = Image.fromarray(mask) |
|
|
|
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) |
|
new_im.paste(orig_bgr_image, mask=pil_im) |
|
rgba_np_img = np.asarray(new_im) |
|
return rgba_np_img |
|
|