|
|
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
def np_img_grey_to_rgb(data): |
|
if data.ndim == 3: |
|
return data |
|
return np.expand_dims(data, 2) * np.ones((1, 1, 3)) |
|
|
|
|
|
def convolve(data1, data2): |
|
if data1.ndim != data2.ndim: |
|
if data1.ndim < 3: |
|
data1 = np_img_grey_to_rgb(data1) |
|
if data2.ndim < 3: |
|
data2 = np_img_grey_to_rgb(data2) |
|
return ifft2(fft2(data1) * fft2(data2)) |
|
|
|
|
|
def fft2(data): |
|
if data.ndim > 2: |
|
out_fft = np.zeros( |
|
(data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128 |
|
) |
|
for c in range(data.shape[2]): |
|
c_data = data[:, :, c] |
|
out_fft[:, :, c] = np.fft.fft2(np.fft.fftshift(c_data), norm="ortho") |
|
out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c]) |
|
else: |
|
out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128) |
|
out_fft[:, :] = np.fft.fft2(np.fft.fftshift(data), norm="ortho") |
|
out_fft[:, :] = np.fft.ifftshift(out_fft[:, :]) |
|
|
|
return out_fft |
|
|
|
|
|
def ifft2(data): |
|
if data.ndim > 2: |
|
out_ifft = np.zeros( |
|
(data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128 |
|
) |
|
for c in range(data.shape[2]): |
|
c_data = data[:, :, c] |
|
out_ifft[:, :, c] = np.fft.ifft2(np.fft.fftshift(c_data), norm="ortho") |
|
out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c]) |
|
else: |
|
out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128) |
|
out_ifft[:, :] = np.fft.ifft2(np.fft.fftshift(data), norm="ortho") |
|
out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :]) |
|
|
|
return out_ifft |
|
|
|
|
|
def get_gradient_kernel(width, height, std=3.14, mode="linear"): |
|
window_scale_x = float( |
|
width / min(width, height) |
|
) |
|
window_scale_y = float(height / min(width, height)) |
|
if mode == "gaussian": |
|
x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x |
|
kx = np.exp(-x * x * std) |
|
if window_scale_x != window_scale_y: |
|
y = (np.arange(height) / height * 2.0 - 1.0) * window_scale_y |
|
ky = np.exp(-y * y * std) |
|
else: |
|
y = x |
|
ky = kx |
|
return np.outer(kx, ky) |
|
elif mode == "linear": |
|
x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x |
|
if window_scale_x != window_scale_y: |
|
y = (np.arange(height) / height * 2.0 - 1.0) * window_scale_y |
|
else: |
|
y = x |
|
return np.clip(1.0 - np.sqrt(np.add.outer(x * x, y * y)) * std / 3.14, 0.0, 1.0) |
|
else: |
|
raise Exception("Error: Unknown mode in get_gradient_kernel: {0}".format(mode)) |
|
|
|
|
|
def image_blur(data, std=3.14, mode="linear"): |
|
width = data.shape[0] |
|
height = data.shape[1] |
|
kernel = get_gradient_kernel(width, height, std, mode=mode) |
|
return np.real(convolve(data, kernel / np.sqrt(np.sum(kernel * kernel)))) |
|
|
|
|
|
def soften_mask(mask_img, softness, space): |
|
if softness == 0: |
|
return mask_img |
|
softness = min(softness, 1.0) |
|
space = np.clip(space, 0.0, 1.0) |
|
original_max_opacity = np.max(mask_img) |
|
out_mask = mask_img <= 0.0 |
|
blurred_mask = image_blur(mask_img, 3.5 / softness, mode="linear") |
|
blurred_mask = np.maximum(blurred_mask - np.max(blurred_mask[out_mask]), 0.0) |
|
mask_img *= blurred_mask |
|
mask_img /= np.max(mask_img) |
|
mask_img = np.clip(mask_img - space, 0.0, 1.0) |
|
mask_img /= np.max(mask_img) |
|
mask_img *= original_max_opacity |
|
return mask_img |
|
|
|
|
|
def expand_image( |
|
cv2_img, top: int, right: int, bottom: int, left: int, softness: float, space: float |
|
): |
|
assert cv2_img.shape[2] == 3 |
|
origin_h, origin_w = cv2_img.shape[:2] |
|
new_width = cv2_img.shape[1] + left + right |
|
new_height = cv2_img.shape[0] + top + bottom |
|
|
|
|
|
|
|
new_img = cv2.copyMakeBorder( |
|
cv2_img, top, bottom, left, right, cv2.BORDER_REPLICATE |
|
) |
|
mask_img = np.zeros((new_height, new_width), np.uint8) |
|
mask_img[top : top + cv2_img.shape[0], left : left + cv2_img.shape[1]] = 255 |
|
|
|
if softness > 0.0: |
|
mask_img = soften_mask(mask_img / 255.0, softness / 100.0, space / 100.0) |
|
mask_img = (np.clip(mask_img, 0.0, 1.0) * 255.0).astype(np.uint8) |
|
|
|
mask_image = 255.0 - mask_img |
|
rgb_init_image = ( |
|
0.0 + new_img[:, :, 0:3] |
|
) |
|
|
|
hard_mask = np.zeros_like(cv2_img[:, :, 0]) |
|
if top != 0: |
|
hard_mask[0 : origin_h // 2, :] = 255 |
|
if bottom != 0: |
|
hard_mask[origin_h // 2 :, :] = 255 |
|
if left != 0: |
|
hard_mask[:, 0 : origin_w // 2] = 255 |
|
if right != 0: |
|
hard_mask[:, origin_w // 2 :] = 255 |
|
|
|
hard_mask = cv2.copyMakeBorder( |
|
hard_mask, top, bottom, left, right, cv2.BORDER_DEFAULT, value=255 |
|
) |
|
mask_image = np.where(hard_mask > 0, mask_image, 0) |
|
return rgb_init_image.astype(np.uint8), mask_image.astype(np.uint8) |
|
|
|
|
|
if __name__ == "__main__": |
|
from pathlib import Path |
|
|
|
current_dir = Path(__file__).parent.absolute().resolve() |
|
image_path = current_dir.parent / "tests" / "bunny.jpeg" |
|
init_image = cv2.imread(str(image_path)) |
|
init_image, mask_image = expand_image( |
|
init_image, |
|
top=100, |
|
right=100, |
|
bottom=100, |
|
left=100, |
|
softness=20, |
|
space=20, |
|
) |
|
print(mask_image.dtype, mask_image.min(), mask_image.max()) |
|
print(init_image.dtype, init_image.min(), init_image.max()) |
|
mask_image = mask_image.astype(np.uint8) |
|
init_image = init_image.astype(np.uint8) |
|
cv2.imwrite("expanded_image.png", init_image) |
|
cv2.imwrite("expanded_mask.png", mask_image) |
|
|