|
from PIL import Image |
|
import PIL.Image |
|
import cv2 |
|
import torch |
|
from loguru import logger |
|
|
|
from ..base import DiffusionInpaintModel |
|
from ..helper.cpu_text_encoder import CPUTextEncoderWrapper |
|
from ..utils import ( |
|
handle_from_pretrained_exceptions, |
|
get_torch_dtype, |
|
enable_low_mem, |
|
is_local_files_only, |
|
) |
|
from iopaint.schema import InpaintRequest |
|
from .powerpaint_tokenizer import add_task_to_prompt |
|
from ...const import POWERPAINT_NAME |
|
|
|
|
|
class PowerPaint(DiffusionInpaintModel): |
|
name = POWERPAINT_NAME |
|
pad_mod = 8 |
|
min_size = 512 |
|
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" |
|
|
|
def init_model(self, device: torch.device, **kwargs): |
|
from .pipeline_powerpaint import StableDiffusionInpaintPipeline |
|
from .powerpaint_tokenizer import PowerPaintTokenizer |
|
|
|
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False)) |
|
model_kwargs = {"local_files_only": is_local_files_only(**kwargs)} |
|
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False): |
|
logger.info("Disable Stable Diffusion Model NSFW checker") |
|
model_kwargs.update( |
|
dict( |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker=False, |
|
) |
|
) |
|
|
|
self.model = handle_from_pretrained_exceptions( |
|
StableDiffusionInpaintPipeline.from_pretrained, |
|
pretrained_model_name_or_path=self.name, |
|
variant="fp16", |
|
torch_dtype=torch_dtype, |
|
**model_kwargs, |
|
) |
|
self.model.tokenizer = PowerPaintTokenizer(self.model.tokenizer) |
|
|
|
enable_low_mem(self.model, kwargs.get("low_mem", False)) |
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu: |
|
logger.info("Enable sequential cpu offload") |
|
self.model.enable_sequential_cpu_offload(gpu_id=0) |
|
else: |
|
self.model = self.model.to(device) |
|
if kwargs["sd_cpu_textencoder"]: |
|
logger.info("Run Stable Diffusion TextEncoder on CPU") |
|
self.model.text_encoder = CPUTextEncoderWrapper( |
|
self.model.text_encoder, torch_dtype |
|
) |
|
|
|
self.callback = kwargs.pop("callback", None) |
|
|
|
def forward(self, image, mask, config: InpaintRequest): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
return: BGR IMAGE |
|
""" |
|
self.set_scheduler(config) |
|
|
|
img_h, img_w = image.shape[:2] |
|
promptA, promptB, negative_promptA, negative_promptB = add_task_to_prompt( |
|
config.prompt, config.negative_prompt, config.powerpaint_task |
|
) |
|
|
|
output = self.model( |
|
image=PIL.Image.fromarray(image), |
|
promptA=promptA, |
|
promptB=promptB, |
|
tradoff=config.fitting_degree, |
|
tradoff_nag=config.fitting_degree, |
|
negative_promptA=negative_promptA, |
|
negative_promptB=negative_promptB, |
|
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), |
|
num_inference_steps=config.sd_steps, |
|
strength=config.sd_strength, |
|
guidance_scale=config.sd_guidance_scale, |
|
output_type="np", |
|
callback=self.callback, |
|
height=img_h, |
|
width=img_w, |
|
generator=torch.manual_seed(config.sd_seed), |
|
callback_steps=1, |
|
).images[0] |
|
|
|
output = (output * 255).round().astype("uint8") |
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return output |
|
|