|
import pytest |
|
import torch |
|
|
|
from iopaint.model_manager import ModelManager |
|
from iopaint.schema import HDStrategy, LDMSampler |
|
from iopaint.tests.utils import assert_equal, get_config, current_dir, check_device |
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"]) |
|
@pytest.mark.parametrize( |
|
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP] |
|
) |
|
def test_lama(device, strategy): |
|
check_device(device) |
|
model = ModelManager(name="lama", device=device) |
|
assert_equal( |
|
model, |
|
get_config(strategy=strategy), |
|
f"lama_{strategy[0].upper() + strategy[1:]}_result.png", |
|
) |
|
|
|
fx = 1.3 |
|
assert_equal( |
|
model, |
|
get_config(strategy=strategy), |
|
f"lama_{strategy[0].upper() + strategy[1:]}_fx_{fx}_result.png", |
|
fx=1.3, |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu"]) |
|
@pytest.mark.parametrize( |
|
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP] |
|
) |
|
@pytest.mark.parametrize("ldm_sampler", [LDMSampler.ddim, LDMSampler.plms]) |
|
def test_ldm(device, strategy, ldm_sampler): |
|
check_device(device) |
|
model = ModelManager(name="ldm", device=device) |
|
cfg = get_config(strategy=strategy, ldm_sampler=ldm_sampler) |
|
assert_equal( |
|
model, cfg, f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_result.png" |
|
) |
|
|
|
fx = 1.3 |
|
assert_equal( |
|
model, |
|
cfg, |
|
f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_fx_{fx}_result.png", |
|
fx=fx, |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu"]) |
|
@pytest.mark.parametrize( |
|
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP] |
|
) |
|
@pytest.mark.parametrize("zits_wireframe", [False, True]) |
|
def test_zits(device, strategy, zits_wireframe): |
|
check_device(device) |
|
model = ModelManager(name="zits", device=device) |
|
cfg = get_config(strategy=strategy, zits_wireframe=zits_wireframe) |
|
assert_equal( |
|
model, |
|
cfg, |
|
f"zits_{strategy[0].upper() + strategy[1:]}_wireframe_{zits_wireframe}_result.png", |
|
) |
|
|
|
fx = 1.3 |
|
assert_equal( |
|
model, |
|
cfg, |
|
f"zits_{strategy.capitalize()}_wireframe_{zits_wireframe}_fx_{fx}_result.png", |
|
fx=fx, |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu"]) |
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL]) |
|
@pytest.mark.parametrize("no_half", [True, False]) |
|
def test_mat(device, strategy, no_half): |
|
check_device(device) |
|
model = ModelManager(name="mat", device=device, no_half=no_half) |
|
cfg = get_config(strategy=strategy) |
|
|
|
assert_equal( |
|
model, |
|
cfg, |
|
f"mat_{strategy.capitalize()}_result.png", |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu"]) |
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL]) |
|
def test_fcf(device, strategy): |
|
check_device(device) |
|
model = ModelManager(name="fcf", device=device) |
|
cfg = get_config(strategy=strategy) |
|
|
|
assert_equal(model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=2, fy=2) |
|
assert_equal(model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=3.8, fy=2) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP] |
|
) |
|
@pytest.mark.parametrize("cv2_flag", ["INPAINT_NS", "INPAINT_TELEA"]) |
|
@pytest.mark.parametrize("cv2_radius", [3, 15]) |
|
def test_cv2(strategy, cv2_flag, cv2_radius): |
|
model = ModelManager( |
|
name="cv2", |
|
device=torch.device("cpu"), |
|
) |
|
cfg = get_config(strategy=strategy, cv2_flag=cv2_flag, cv2_radius=cv2_radius) |
|
assert_equal( |
|
model, |
|
cfg, |
|
f"cv2_{strategy.capitalize()}_{cv2_flag}_{cv2_radius}.png", |
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", |
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu"]) |
|
@pytest.mark.parametrize( |
|
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP] |
|
) |
|
def test_manga(device, strategy): |
|
check_device(device) |
|
model = ModelManager( |
|
name="manga", |
|
device=torch.device(device), |
|
) |
|
cfg = get_config(strategy=strategy) |
|
assert_equal( |
|
model, |
|
cfg, |
|
f"manga_{strategy.capitalize()}.png", |
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", |
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"]) |
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL]) |
|
def test_mi_gan(device, strategy): |
|
check_device(device) |
|
model = ModelManager( |
|
name="migan", |
|
device=torch.device(device), |
|
) |
|
cfg = get_config(strategy=strategy) |
|
assert_equal( |
|
model, |
|
cfg, |
|
f"migan_device_{device}.png", |
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", |
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", |
|
fx=1.5, |
|
fy=1.7 |
|
) |
|
|