from torch import nn | |
class CTCHead(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels=6625, | |
fc_decay=0.0004, | |
mid_channels=None, | |
return_feats=False, | |
**kwargs): | |
super(CTCHead, self).__init__() | |
if mid_channels is None: | |
self.fc = nn.Linear( | |
in_channels, | |
out_channels, | |
bias=True,) | |
else: | |
self.fc1 = nn.Linear( | |
in_channels, | |
mid_channels, | |
bias=True, | |
) | |
self.fc2 = nn.Linear( | |
mid_channels, | |
out_channels, | |
bias=True, | |
) | |
self.out_channels = out_channels | |
self.mid_channels = mid_channels | |
self.return_feats = return_feats | |
def forward(self, x, labels=None): | |
if self.mid_channels is None: | |
predicts = self.fc(x) | |
else: | |
x = self.fc1(x) | |
predicts = self.fc2(x) | |
if self.return_feats: | |
result = dict() | |
result['ctc'] = predicts | |
result['ctc_neck'] = x | |
else: | |
result = predicts | |
return result | |