|
from torch import nn |
|
from .RNN import SequenceEncoder, Im2Seq, Im2Im |
|
from .RecMv1_enhance import MobileNetV1Enhance |
|
|
|
from .RecCTCHead import CTCHead |
|
|
|
backbone_dict = {"MobileNetV1Enhance":MobileNetV1Enhance} |
|
neck_dict = {'SequenceEncoder': SequenceEncoder, 'Im2Seq': Im2Seq,'None':Im2Im} |
|
head_dict = {'CTCHead':CTCHead} |
|
|
|
|
|
class RecModel(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert 'in_channels' in config, 'in_channels must in model config' |
|
backbone_type = config.backbone.pop('type') |
|
assert backbone_type in backbone_dict, f'backbone.type must in {backbone_dict}' |
|
self.backbone = backbone_dict[backbone_type](config.in_channels, **config.backbone) |
|
|
|
neck_type = config.neck.pop('type') |
|
assert neck_type in neck_dict, f'neck.type must in {neck_dict}' |
|
self.neck = neck_dict[neck_type](self.backbone.out_channels, **config.neck) |
|
|
|
head_type = config.head.pop('type') |
|
assert head_type in head_dict, f'head.type must in {head_dict}' |
|
self.head = head_dict[head_type](self.neck.out_channels, **config.head) |
|
|
|
self.name = f'RecModel_{backbone_type}_{neck_type}_{head_type}' |
|
|
|
def load_3rd_state_dict(self, _3rd_name, _state): |
|
self.backbone.load_3rd_state_dict(_3rd_name, _state) |
|
self.neck.load_3rd_state_dict(_3rd_name, _state) |
|
self.head.load_3rd_state_dict(_3rd_name, _state) |
|
|
|
def forward(self, x): |
|
x = self.backbone(x) |
|
x = self.neck(x) |
|
x = self.head(x) |
|
return x |
|
|
|
def encode(self, x): |
|
x = self.backbone(x) |
|
x = self.neck(x) |
|
x = self.head.ctc_encoder(x) |
|
return x |
|
|