|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import collections |
|
import itertools |
|
import math |
|
import warnings |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from typing import Tuple |
|
|
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): |
|
return x |
|
return tuple(itertools.repeat(x, n)) |
|
|
|
return parse |
|
|
|
|
|
to_2tuple = _ntuple(2) |
|
|
|
|
|
def _trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn( |
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2, |
|
) |
|
|
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.0)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): |
|
|
|
r"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \leq \text{mean} \leq b`. |
|
|
|
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are |
|
applied while sampling the normal with mean/std applied, therefore a, b args |
|
should be adjusted to match the range of mean, std args. |
|
|
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
Examples: |
|
>>> w = torch.empty(3, 5) |
|
>>> nn.init.trunc_normal_(w) |
|
""" |
|
with torch.no_grad(): |
|
return _trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
def drop_path( |
|
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True |
|
): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, |
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for |
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use |
|
'survival rate' as the argument. |
|
|
|
""" |
|
if drop_prob == 0.0 or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * ( |
|
x.ndim - 1 |
|
) |
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) |
|
if keep_prob > 0.0 and scale_by_keep: |
|
random_tensor.div_(keep_prob) |
|
return x * random_tensor |
|
|
|
|
|
class TimmDropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): |
|
super(TimmDropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
self.scale_by_keep = scale_by_keep |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) |
|
|
|
def extra_repr(self): |
|
return f"drop_prob={round(self.drop_prob,3):0.3f}" |
|
|
|
|
|
class Conv2d_BN(torch.nn.Sequential): |
|
def __init__( |
|
self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1 |
|
): |
|
super().__init__() |
|
self.add_module( |
|
"c", torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False) |
|
) |
|
bn = torch.nn.BatchNorm2d(b) |
|
torch.nn.init.constant_(bn.weight, bn_weight_init) |
|
torch.nn.init.constant_(bn.bias, 0) |
|
self.add_module("bn", bn) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
c, bn = self._modules.values() |
|
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
w = c.weight * w[:, None, None, None] |
|
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
m = torch.nn.Conv2d( |
|
w.size(1) * self.c.groups, |
|
w.size(0), |
|
w.shape[2:], |
|
stride=self.c.stride, |
|
padding=self.c.padding, |
|
dilation=self.c.dilation, |
|
groups=self.c.groups, |
|
) |
|
m.weight.data.copy_(w) |
|
m.bias.data.copy_(b) |
|
return m |
|
|
|
|
|
class DropPath(TimmDropPath): |
|
def __init__(self, drop_prob=None): |
|
super().__init__(drop_prob=drop_prob) |
|
self.drop_prob = drop_prob |
|
|
|
def __repr__(self): |
|
msg = super().__repr__() |
|
msg += f"(drop_prob={self.drop_prob})" |
|
return msg |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
def __init__(self, in_chans, embed_dim, resolution, activation): |
|
super().__init__() |
|
img_size: Tuple[int, int] = to_2tuple(resolution) |
|
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4) |
|
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1] |
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
n = embed_dim |
|
self.seq = nn.Sequential( |
|
Conv2d_BN(in_chans, n // 2, 3, 2, 1), |
|
activation(), |
|
Conv2d_BN(n // 2, n, 3, 2, 1), |
|
) |
|
|
|
def forward(self, x): |
|
return self.seq(x) |
|
|
|
|
|
class MBConv(nn.Module): |
|
def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path): |
|
super().__init__() |
|
self.in_chans = in_chans |
|
self.hidden_chans = int(in_chans * expand_ratio) |
|
self.out_chans = out_chans |
|
|
|
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1) |
|
self.act1 = activation() |
|
|
|
self.conv2 = Conv2d_BN( |
|
self.hidden_chans, |
|
self.hidden_chans, |
|
ks=3, |
|
stride=1, |
|
pad=1, |
|
groups=self.hidden_chans, |
|
) |
|
self.act2 = activation() |
|
|
|
self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0) |
|
self.act3 = activation() |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
|
|
x = self.conv1(x) |
|
x = self.act1(x) |
|
|
|
x = self.conv2(x) |
|
x = self.act2(x) |
|
|
|
x = self.conv3(x) |
|
|
|
x = self.drop_path(x) |
|
|
|
x += shortcut |
|
x = self.act3(x) |
|
|
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
def __init__(self, input_resolution, dim, out_dim, activation): |
|
super().__init__() |
|
|
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.out_dim = out_dim |
|
self.act = activation() |
|
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0) |
|
stride_c = 2 |
|
if out_dim == 320 or out_dim == 448 or out_dim == 576: |
|
stride_c = 1 |
|
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim) |
|
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0) |
|
|
|
def forward(self, x): |
|
if x.ndim == 3: |
|
H, W = self.input_resolution |
|
B = len(x) |
|
|
|
x = x.view(B, H, W, -1).permute(0, 3, 1, 2) |
|
|
|
x = self.conv1(x) |
|
x = self.act(x) |
|
|
|
x = self.conv2(x) |
|
x = self.act(x) |
|
x = self.conv3(x) |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class ConvLayer(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
activation, |
|
drop_path=0.0, |
|
downsample=None, |
|
use_checkpoint=False, |
|
out_dim=None, |
|
conv_expand_ratio=4.0, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
MBConv( |
|
dim, |
|
dim, |
|
conv_expand_ratio, |
|
activation, |
|
drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample( |
|
input_resolution, dim=dim, out_dim=out_dim, activation=activation |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x): |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
return x |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.norm = nn.LayerNorm(in_features) |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.act = act_layer() |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
|
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(torch.nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
key_dim, |
|
num_heads=8, |
|
attn_ratio=4, |
|
resolution=(14, 14), |
|
): |
|
super().__init__() |
|
|
|
assert isinstance(resolution, tuple) and len(resolution) == 2 |
|
self.num_heads = num_heads |
|
self.scale = key_dim**-0.5 |
|
self.key_dim = key_dim |
|
self.nh_kd = nh_kd = key_dim * num_heads |
|
self.d = int(attn_ratio * key_dim) |
|
self.dh = int(attn_ratio * key_dim) * num_heads |
|
self.attn_ratio = attn_ratio |
|
h = self.dh + nh_kd * 2 |
|
|
|
self.norm = nn.LayerNorm(dim) |
|
self.qkv = nn.Linear(dim, h) |
|
self.proj = nn.Linear(self.dh, dim) |
|
|
|
points = list(itertools.product(range(resolution[0]), range(resolution[1]))) |
|
N = len(points) |
|
attention_offsets = {} |
|
idxs = [] |
|
for p1 in points: |
|
for p2 in points: |
|
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) |
|
if offset not in attention_offsets: |
|
attention_offsets[offset] = len(attention_offsets) |
|
idxs.append(attention_offsets[offset]) |
|
self.attention_biases = torch.nn.Parameter( |
|
torch.zeros(num_heads, len(attention_offsets)) |
|
) |
|
self.register_buffer( |
|
"attention_bias_idxs", torch.LongTensor(idxs).view(N, N), persistent=False |
|
) |
|
|
|
@torch.no_grad() |
|
def train(self, mode=True): |
|
super().train(mode) |
|
if mode and hasattr(self, "ab"): |
|
del self.ab |
|
else: |
|
self.register_buffer( |
|
"ab", |
|
self.attention_biases[:, self.attention_bias_idxs], |
|
persistent=False, |
|
) |
|
|
|
def forward(self, x): |
|
B, N, _ = x.shape |
|
|
|
|
|
x = self.norm(x) |
|
|
|
qkv = self.qkv(x) |
|
|
|
q, k, v = qkv.view(B, N, self.num_heads, -1).split( |
|
[self.key_dim, self.key_dim, self.d], dim=3 |
|
) |
|
|
|
q = q.permute(0, 2, 1, 3) |
|
k = k.permute(0, 2, 1, 3) |
|
v = v.permute(0, 2, 1, 3) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale + ( |
|
self.attention_biases[:, self.attention_bias_idxs] |
|
if self.training |
|
else self.ab |
|
) |
|
attn = attn.softmax(dim=-1) |
|
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class TinyViTBlock(nn.Module): |
|
r"""TinyViT Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int, int]): Input resolution. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
local_conv_size (int): the kernel size of the convolution between |
|
Attention and MLP. Default: 3 |
|
activation: the activation function. Default: nn.GELU |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads, |
|
window_size=7, |
|
mlp_ratio=4.0, |
|
drop=0.0, |
|
drop_path=0.0, |
|
local_conv_size=3, |
|
activation=nn.GELU, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
assert window_size > 0, "window_size must be greater than 0" |
|
self.window_size = window_size |
|
self.mlp_ratio = mlp_ratio |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
assert dim % num_heads == 0, "dim must be divisible by num_heads" |
|
head_dim = dim // num_heads |
|
|
|
window_resolution = (window_size, window_size) |
|
self.attn = Attention( |
|
dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution |
|
) |
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
mlp_activation = activation |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=mlp_activation, |
|
drop=drop, |
|
) |
|
|
|
pad = local_conv_size // 2 |
|
self.local_conv = Conv2d_BN( |
|
dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim |
|
) |
|
|
|
def forward(self, x): |
|
H, W = self.input_resolution |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
res_x = x |
|
if H == self.window_size and W == self.window_size: |
|
x = self.attn(x) |
|
else: |
|
x = x.view(B, H, W, C) |
|
pad_b = (self.window_size - H % self.window_size) % self.window_size |
|
pad_r = (self.window_size - W % self.window_size) % self.window_size |
|
padding = pad_b > 0 or pad_r > 0 |
|
|
|
if padding: |
|
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) |
|
|
|
pH, pW = H + pad_b, W + pad_r |
|
nH = pH // self.window_size |
|
nW = pW // self.window_size |
|
|
|
x = ( |
|
x.view(B, nH, self.window_size, nW, self.window_size, C) |
|
.transpose(2, 3) |
|
.reshape(B * nH * nW, self.window_size * self.window_size, C) |
|
) |
|
x = self.attn(x) |
|
|
|
x = ( |
|
x.view(B, nH, nW, self.window_size, self.window_size, C) |
|
.transpose(2, 3) |
|
.reshape(B, pH, pW, C) |
|
) |
|
|
|
if padding: |
|
x = x[:, :H, :W].contiguous() |
|
|
|
x = x.view(B, L, C) |
|
|
|
x = res_x + self.drop_path(x) |
|
|
|
x = x.transpose(1, 2).reshape(B, C, H, W) |
|
x = self.local_conv(x) |
|
x = x.view(B, C, L).transpose(1, 2) |
|
|
|
x = x + self.drop_path(self.mlp(x)) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " |
|
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" |
|
) |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
"""A basic TinyViT layer for one stage. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3 |
|
activation: the activation function. Default: nn.GELU |
|
out_dim: the output dimension of the layer. Default: dim |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
num_heads, |
|
window_size, |
|
mlp_ratio=4.0, |
|
drop=0.0, |
|
drop_path=0.0, |
|
downsample=None, |
|
use_checkpoint=False, |
|
local_conv_size=3, |
|
activation=nn.GELU, |
|
out_dim=None, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
TinyViTBlock( |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
drop=drop, |
|
drop_path=drop_path[i] |
|
if isinstance(drop_path, list) |
|
else drop_path, |
|
local_conv_size=local_conv_size, |
|
activation=activation, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample( |
|
input_resolution, dim=dim, out_dim=out_dim, activation=activation |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x): |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" |
|
|
|
|
|
class LayerNorm2d(nn.Module): |
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(num_channels)) |
|
self.bias = nn.Parameter(torch.zeros(num_channels)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
|
|
class TinyViT(nn.Module): |
|
def __init__( |
|
self, |
|
img_size=224, |
|
in_chans=3, |
|
num_classes=1000, |
|
embed_dims=[96, 192, 384, 768], |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_sizes=[7, 7, 14, 7], |
|
mlp_ratio=4.0, |
|
drop_rate=0.0, |
|
drop_path_rate=0.1, |
|
use_checkpoint=False, |
|
mbconv_expand_ratio=4.0, |
|
local_conv_size=3, |
|
layer_lr_decay=1.0, |
|
): |
|
super().__init__() |
|
self.img_size = img_size |
|
self.num_classes = num_classes |
|
self.depths = depths |
|
self.num_layers = len(depths) |
|
self.mlp_ratio = mlp_ratio |
|
|
|
activation = nn.GELU |
|
|
|
self.patch_embed = PatchEmbed( |
|
in_chans=in_chans, |
|
embed_dim=embed_dims[0], |
|
resolution=img_size, |
|
activation=activation, |
|
) |
|
|
|
patches_resolution = self.patch_embed.patches_resolution |
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) |
|
] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
kwargs = dict( |
|
dim=embed_dims[i_layer], |
|
input_resolution=( |
|
patches_resolution[0] |
|
// (2 ** (i_layer - 1 if i_layer == 3 else i_layer)), |
|
patches_resolution[1] |
|
// (2 ** (i_layer - 1 if i_layer == 3 else i_layer)), |
|
), |
|
|
|
|
|
depth=depths[i_layer], |
|
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], |
|
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, |
|
use_checkpoint=use_checkpoint, |
|
out_dim=embed_dims[min(i_layer + 1, len(embed_dims) - 1)], |
|
activation=activation, |
|
) |
|
if i_layer == 0: |
|
layer = ConvLayer( |
|
conv_expand_ratio=mbconv_expand_ratio, |
|
**kwargs, |
|
) |
|
else: |
|
layer = BasicLayer( |
|
num_heads=num_heads[i_layer], |
|
window_size=window_sizes[i_layer], |
|
mlp_ratio=self.mlp_ratio, |
|
drop=drop_rate, |
|
local_conv_size=local_conv_size, |
|
**kwargs, |
|
) |
|
self.layers.append(layer) |
|
|
|
|
|
self.norm_head = nn.LayerNorm(embed_dims[-1]) |
|
self.head = ( |
|
nn.Linear(embed_dims[-1], num_classes) |
|
if num_classes > 0 |
|
else torch.nn.Identity() |
|
) |
|
|
|
|
|
self.apply(self._init_weights) |
|
self.set_layer_lr_decay(layer_lr_decay) |
|
self.neck = nn.Sequential( |
|
nn.Conv2d( |
|
embed_dims[-1], |
|
256, |
|
kernel_size=1, |
|
bias=False, |
|
), |
|
LayerNorm2d(256), |
|
nn.Conv2d( |
|
256, |
|
256, |
|
kernel_size=3, |
|
padding=1, |
|
bias=False, |
|
), |
|
LayerNorm2d(256), |
|
) |
|
|
|
def set_layer_lr_decay(self, layer_lr_decay): |
|
decay_rate = layer_lr_decay |
|
|
|
|
|
depth = sum(self.depths) |
|
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)] |
|
|
|
|
|
def _set_lr_scale(m, scale): |
|
for p in m.parameters(): |
|
p.lr_scale = scale |
|
|
|
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0])) |
|
i = 0 |
|
for layer in self.layers: |
|
for block in layer.blocks: |
|
block.apply(lambda x: _set_lr_scale(x, lr_scales[i])) |
|
i += 1 |
|
if layer.downsample is not None: |
|
layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1])) |
|
assert i == depth |
|
for m in [self.norm_head, self.head]: |
|
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1])) |
|
|
|
for k, p in self.named_parameters(): |
|
p.param_name = k |
|
|
|
def _check_lr_scale(m): |
|
for p in m.parameters(): |
|
assert hasattr(p, "lr_scale"), p.param_name |
|
|
|
self.apply(_check_lr_scale) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
return {"attention_biases"} |
|
|
|
def forward_features(self, x): |
|
|
|
x = self.patch_embed(x) |
|
|
|
x = self.layers[0](x) |
|
start_i = 1 |
|
|
|
for i in range(start_i, len(self.layers)): |
|
layer = self.layers[i] |
|
x = layer(x) |
|
B, _, C = x.size() |
|
x = x.view(B, 64, 64, C) |
|
x = x.permute(0, 3, 1, 2) |
|
x = self.neck(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
|
|
|
|
return x |
|
|