|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
from torch.nn import functional as F |
|
from torchvision.transforms.functional import resize, to_pil_image |
|
|
|
from copy import deepcopy |
|
from typing import Tuple |
|
|
|
|
|
class ResizeLongestSide: |
|
""" |
|
Resizes images to longest side 'target_length', as well as provides |
|
methods for resizing coordinates and boxes. Provides methods for |
|
transforming both numpy array and batched torch tensors. |
|
""" |
|
|
|
def __init__(self, target_length: int) -> None: |
|
self.target_length = target_length |
|
|
|
def apply_image(self, image: np.ndarray) -> np.ndarray: |
|
""" |
|
Expects a numpy array with shape HxWxC in uint8 format. |
|
""" |
|
target_size = self.get_preprocess_shape( |
|
image.shape[0], image.shape[1], self.target_length |
|
) |
|
return np.array(resize(to_pil_image(image), target_size)) |
|
|
|
def apply_coords( |
|
self, coords: np.ndarray, original_size: Tuple[int, ...] |
|
) -> np.ndarray: |
|
""" |
|
Expects a numpy array of length 2 in the final dimension. Requires the |
|
original image size in (H, W) format. |
|
""" |
|
old_h, old_w = original_size |
|
new_h, new_w = self.get_preprocess_shape( |
|
original_size[0], original_size[1], self.target_length |
|
) |
|
coords = deepcopy(coords).astype(float) |
|
coords[..., 0] = coords[..., 0] * (new_w / old_w) |
|
coords[..., 1] = coords[..., 1] * (new_h / old_h) |
|
return coords |
|
|
|
def apply_boxes( |
|
self, boxes: np.ndarray, original_size: Tuple[int, ...] |
|
) -> np.ndarray: |
|
""" |
|
Expects a numpy array shape Bx4. Requires the original image size |
|
in (H, W) format. |
|
""" |
|
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) |
|
return boxes.reshape(-1, 4) |
|
|
|
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Expects batched images with shape BxCxHxW and float format. This |
|
transformation may not exactly match apply_image. apply_image is |
|
the transformation expected by the model. |
|
""" |
|
|
|
target_size = self.get_preprocess_shape( |
|
image.shape[0], image.shape[1], self.target_length |
|
) |
|
return F.interpolate( |
|
image, target_size, mode="bilinear", align_corners=False, antialias=True |
|
) |
|
|
|
def apply_coords_torch( |
|
self, coords: torch.Tensor, original_size: Tuple[int, ...] |
|
) -> torch.Tensor: |
|
""" |
|
Expects a torch tensor with length 2 in the last dimension. Requires the |
|
original image size in (H, W) format. |
|
""" |
|
old_h, old_w = original_size |
|
new_h, new_w = self.get_preprocess_shape( |
|
original_size[0], original_size[1], self.target_length |
|
) |
|
coords = deepcopy(coords).to(torch.float) |
|
coords[..., 0] = coords[..., 0] * (new_w / old_w) |
|
coords[..., 1] = coords[..., 1] * (new_h / old_h) |
|
return coords |
|
|
|
def apply_boxes_torch( |
|
self, boxes: torch.Tensor, original_size: Tuple[int, ...] |
|
) -> torch.Tensor: |
|
""" |
|
Expects a torch tensor with shape Bx4. Requires the original image |
|
size in (H, W) format. |
|
""" |
|
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) |
|
return boxes.reshape(-1, 4) |
|
|
|
@staticmethod |
|
def get_preprocess_shape( |
|
oldh: int, oldw: int, long_side_length: int |
|
) -> Tuple[int, int]: |
|
""" |
|
Compute the output size given input size and target long side length. |
|
""" |
|
scale = long_side_length * 1.0 / max(oldh, oldw) |
|
newh, neww = oldh * scale, oldw * scale |
|
neww = int(neww + 0.5) |
|
newh = int(newh + 0.5) |
|
return (newh, neww) |
|
|