import spaces import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread model_path = 'sail/Sailor2-1B-Chat' # Loading the tokenizer and model from Hugging Face's model hub. tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) # using CUDA for an optimal experience device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) # Defining a custom stopping criteria class for the model's text generation. class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [151645] # IDs of tokens where the generation should stop. for stop_id in stop_ids: if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. return True return False system_role= 'system' user_role = 'user' assistant_role = 'assistant' sft_start_token = "<|im_start|>" sft_end_token = "<|im_end|>" ct_end_token = "<|endoftext|>" system_prompt= \ 'You are an AI assistant named Sailor2, created by Sea AI Lab. \ As an AI assistant, you can answer questions in English, Chinese, and Southeast Asian languages \ such as Burmese, Cebuano, Ilocano, Indonesian, Javanese, Khmer, Lao, Malay, Sundanese, Tagalog, Thai, Vietnamese, and Waray. \ Your responses should be friendly, unbiased, informative, detailed, and faithful.' system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>" # Function to generate model predictions. @spaces.GPU() def predict(message, history): # 初始化对话历史格式 if history is None: history = [] # 在历史中添加当前用户输入,临时设置机器人的回复为空 history_transformer_format = history + [[message, ""]] stop = StopOnTokens() # 格式化输入为模型需要的格式 messages = ( system_prompt + sft_end_token.join([ sft_end_token.join([ f"\n{sft_start_token}{user_role}\n" + item[0], f"\n{sft_start_token}{assistant_role}\n" + item[1] ]) for item in history_transformer_format ]) ) model_inputs = tokenizer([messages], return_tensors="pt").to(device) streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=model_inputs["input_ids"], attention_mask=model_inputs["attention_mask"], streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.8, top_k=20, temperature=0.7, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]), repetition_penalty=1.1, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Starting the generation in a separate thread. partial_message = "" for new_token in streamer: partial_message += new_token if sft_end_token in partial_message: # Breaking the loop if the stop token is generated. break yield partial_message css = """ full-height { height: 100%; } """ prompt_examples = [ 'How to cook a fish?', 'Cara memanggang ikan', 'วิธีย่างปลา', 'Cách nướng cá' ] # placeholder = """ #
""") gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css) demo.launch() # Launching the web interface.