File size: 25,856 Bytes
235af27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
print("starting...")
import ebooklib
from ebooklib import epub

import os
import subprocess
import ebooklib
from ebooklib import epub
from bs4 import BeautifulSoup
import re
import csv
import nltk

import os
import subprocess
import sys
import torchaudio

import os
import torch
from TTS.api import TTS
from nltk.tokenize import sent_tokenize
from pydub import AudioSegment

from tqdm import tqdm



import os
import subprocess
import ebooklib
from ebooklib import epub
from bs4 import BeautifulSoup
import re
import csv
import nltk

from bs4 import BeautifulSoup
import os
import shutil
import subprocess
import re
from pydub import AudioSegment
import tempfile
import urllib.request
import zipfile
import requests
from tqdm import tqdm
import nltk
from nltk.tokenize import sent_tokenize
import torch
import torchaudio
import gradio as gr
from threading import Lock, Thread
from queue import Queue
import smtplib
from email.mime.text import MIMEText


import os
import shutil
import subprocess
import re
from pydub import AudioSegment
import tempfile
from pydub import AudioSegment
import os
import nltk
from nltk.tokenize import sent_tokenize
import sys
import torch
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from tqdm import tqdm
import gradio as gr
from gradio import Progress
import urllib.request
import zipfile


default_target_voice_path = "default_voice.wav"  # Ensure this is a valid path
default_language_code = "en"


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Device selected is: {device}")

nltk.download('punkt')  # Ensure necessary models are downloaded

# Global variables for queue management
queue = Queue()
queue_lock = Lock()

# Function to send an email with the download link
def send_email(to_address, download_link):
    from_address = "your_email@example.com"  # Replace with your email
    subject = "Your Audiobook is Ready"
    body = f"Your audiobook has been processed. You can download it from the following link: {download_link}"
    
    msg = MIMEText(body)
    msg['Subject'] = subject
    msg['From'] = from_address
    msg['To'] = to_address

    try:
        with smtplib.SMTP('smtp.example.com', 587) as server:  # Replace with your SMTP server details
            server.starttls()
            server.login(from_address, "your_password")  # Replace with your email password
            server.sendmail(from_address, [to_address], msg.as_string())
            print(f"Email sent to {to_address}")
    except Exception as e:
        print(f"Failed to send email: {e}")

# Function to download and extract the custom model
def download_and_extract_zip(url, extract_to='.'):
    try:
        os.makedirs(extract_to, exist_ok=True)
        zip_path = os.path.join(extract_to, 'model.zip')
        
        with tqdm(unit='B', unit_scale=True, miniters=1, desc="Downloading Model") as t:
            def reporthook(blocknum, blocksize, totalsize):
                t.total = totalsize
                t.update(blocknum * blocksize - t.n)
            urllib.request.urlretrieve(url, zip_path, reporthook=reporthook)
        print(f"Downloaded zip file to {zip_path}")
        
        with zipfile.ZipFile(zip_path, 'r') as zip_ref:
            files = zip_ref.namelist()
            with tqdm(total=len(files), unit="file", desc="Extracting Files") as t:
                for file in files:
                    if not file.endswith('/'):
                        extracted_path = zip_ref.extract(file, extract_to)
                        base_file_path = os.path.join(extract_to, os.path.basename(file))
                        os.rename(extracted_path, base_file_path)
                    t.update(1)
        
        os.remove(zip_path)
        for root, dirs, files in os.walk(extract_to, topdown=False):
            for name in dirs:
                os.rmdir(os.path.join(root, name))
        print(f"Extracted files to {extract_to}")
        
        required_files = ['model.pth', 'config.json', 'vocab.json_']
        missing_files = [file for file in required_files if not os.path.exists(os.path.join(extract_to, file))]
        
        if not missing_files:
            print("All required files (model.pth, config.json, vocab.json_) found.")
        else:
            print(f"Missing files: {', '.join(missing_files)}")
    
    except Exception as e:
        print(f"Failed to download or extract zip file: {e}")

# Function to check if a folder is empty
def is_folder_empty(folder_path):
    if os.path.exists(folder_path) and os.path.isdir(folder_path):
        return not os.listdir(folder_path)
    else:
        print(f"The path {folder_path} is not a valid folder.")
        return None

# Function to remove a folder and its contents
def remove_folder_with_contents(folder_path):
    try:
        shutil.rmtree(folder_path)
        print(f"Successfully removed {folder_path} and all of its contents.")
    except Exception as e:
        print(f"Error removing {folder_path}: {e}")

# Function to wipe the contents of a folder
def wipe_folder(folder_path):
    if not os.path.exists(folder_path):
        print(f"The folder {folder_path} does not exist.")
        return

    for item in os.listdir(folder_path):
        item_path = os.path.join(folder_path, item)
        if os.path.isfile(item_path):
            os.remove(item_path)
            print(f"Removed file: {item_path}")
        elif os.path.isdir(item_path):
            shutil.rmtree(item_path)
            print(f"Removed directory and its contents: {item_path}")
    
    print(f"All contents wiped from {folder_path}.")

# Function to create M4B from chapters
def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
    def sort_key(chapter_file):
        numbers = re.findall(r'\d+', chapter_file)
        return int(numbers[0]) if numbers else 0

    def extract_metadata_and_cover(ebook_path):
        try:
            cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
            subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
            if os.path.exists(cover_path):
                return cover_path
        except Exception as e:
            print(f"Error extracting eBook metadata or cover: {e}")
        return None

    def combine_wav_files(chapter_files, output_path):
        combined_audio = AudioSegment.empty()
        for chapter_file in chapter_files:
            audio_segment = AudioSegment.from_wav(chapter_file)
            combined_audio += audio_segment
        combined_audio.export(output_path, format='wav')
        print(f"Combined audio saved to {output_path}")

    def generate_ffmpeg_metadata(chapter_files, metadata_file):
        with open(metadata_file, 'w') as file:
            file.write(';FFMETADATA1\n')
            start_time = 0
            for index, chapter_file in enumerate(chapter_files):
                duration_ms = len(AudioSegment.from_wav(chapter_file))
                file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
                file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
                start_time += duration_ms

    def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
        os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
        
        ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
        if cover_image:
            ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
        else:
            ffmpeg_cmd += ['-map', '0:a']
        
        ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
        if cover_image:
            ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
        ffmpeg_cmd += [output_m4b]

        subprocess.run(ffmpeg_cmd, check=True)

    chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
    temp_dir = tempfile.gettempdir()
    temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
    metadata_file = os.path.join(temp_dir, 'metadata.txt')
    cover_image = extract_metadata_and_cover(ebook_file)
    output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')

    combine_wav_files(chapter_files, temp_combined_wav)
    generate_ffmpeg_metadata(chapter_files, metadata_file)
    create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)

    if os.path.exists(temp_combined_wav):
        os.remove(temp_combined_wav)
    if os.path.exists(metadata_file):
        os.remove(metadata_file)
    if cover_image and os.path.exists(cover_image):
        os.remove(cover_image)

# Function to create chapter-labeled book
def create_chapter_labeled_book(ebook_file_path):
    def ensure_directory(directory_path):
        if not os.path.exists(directory_path):
            os.makedirs(directory_path)
            print(f"Created directory: {directory_path}")

    ensure_directory(os.path.join(".", 'Working_files', 'Book'))

    def convert_to_epub(input_path, output_path):
        try:
            subprocess.run(['ebook-convert', input_path, output_path], check=True)
        except subprocess.CalledProcessError as e:
            print(f"An error occurred while converting the eBook: {e}")
            return False
        return True

    def save_chapters_as_text(epub_path):
        directory = os.path.join(".", "Working_files", "temp_ebook")
        ensure_directory(directory)

        book = epub.read_epub(epub_path)

        previous_chapter_text = ''
        previous_filename = ''
        chapter_counter = 0

        for item in book.get_items():
            if item.get_type() == ebooklib.ITEM_DOCUMENT:
                soup = BeautifulSoup(item.get_content(), 'html.parser')
                text = soup.get_text()

                if text.strip():
                    if len(text) < 2300 and previous_filename:
                        with open(previous_filename, 'a', encoding='utf-8') as file:
                            file.write('\n' + text)
                    else:
                        previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
                        chapter_counter += 1
                        with open(previous_filename, 'w', encoding='utf-8') as file:
                            file.write(text)
                            print(f"Saved chapter: {previous_filename}")

    input_ebook = ebook_file_path
    output_epub = os.path.join(".", "Working_files", "temp.epub")

    if os.path.exists(output_epub):
        os.remove(output_epub)
        print(f"File {output_epub} has been removed.")
    else:
        print(f"The file {output_epub} does not exist.")

    if convert_to_epub(input_ebook, output_epub):
        save_chapters_as_text(output_epub)

    nltk.download('punkt')

    def process_chapter_files(folder_path, output_csv):
        with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])

            chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
            for filename in chapter_files:
                if filename.startswith('chapter_') and filename.endswith('.txt'):
                    chapter_number = int(filename.split('_')[1].split('.')[0])
                    file_path = os.path.join(folder_path, filename)

                    try:
                        with open(file_path, 'r', encoding='utf-8') as file:
                            text = file.read()
                            if text:
                                text = "NEWCHAPTERABC" + text
                            sentences = nltk.tokenize.sent_tokenize(text)
                            for sentence in sentences:
                                start_location = text.find(sentence)
                                end_location = start_location + len(sentence)
                                writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
                    except Exception as e:
                        print(f"Error processing file {filename}: {e}")

    folder_path = os.path.join(".", "Working_files", "temp_ebook")
    output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")

    process_chapter_files(folder_path, output_csv)

    def sort_key(filename):
        match = re.search(r'chapter_(\d+)\.txt', filename)
        return int(match.group(1)) if match else 0

    def combine_chapters(input_folder, output_file):
        os.makedirs(os.path.dirname(output_file), exist_ok=True)

        files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
        sorted_files = sorted(files, key=sort_key)

        with open(output_file, 'w', encoding='utf-8') as outfile:
            for i, filename in enumerate(sorted_files):
                with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile:
                    outfile.write(infile.read())
                    if i < len(sorted_files) - 1:
                        outfile.write("\nNEWCHAPTERABC\n")

    input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
    output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')

    combine_chapters(input_folder, output_file)
    ensure_directory(os.path.join(".", "Working_files", "Book"))

# Function to combine WAV files
def combine_wav_files(input_directory, output_directory, file_name):
    os.makedirs(output_directory, exist_ok=True)
    output_file_path = os.path.join(output_directory, file_name)
    combined_audio = AudioSegment.empty()
    input_file_paths = sorted(
        [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
        key=lambda f: int(''.join(filter(str.isdigit, f)))
    )
    for input_file_path in input_file_paths:
        audio_segment = AudioSegment.from_wav(input_file_path)
        combined_audio += audio_segment
    combined_audio.export(output_file_path, format='wav')
    print(f"Combined audio saved to {output_file_path}")

# Function to split long sentences
def split_long_sentence(sentence, max_length=249, max_pauses=10):
    parts = []
    while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
        possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
        if possible_splits:
            split_at = possible_splits[-1] + 1
        else:
            split_at = max_length
        parts.append(sentence[:split_at].strip())
        sentence = sentence[split_at:].strip()
    parts.append(sentence)
    return parts

# Function to convert chapters to audio using custom model
def convert_chapters_to_audio_custom_model(chapters_dir, output_audio_dir, target_voice_path=None, language=None, custom_model=None):
    if target_voice_path is None:
        target_voice_path = default_target_voice_path
    if custom_model:
        print("Loading custom model...")
        config = XttsConfig()
        config.load_json(custom_model['config'])
        model = Xtts.init_from_config(config)
        model.load_checkpoint(config, checkpoint_path=custom_model['model'], vocab_path=custom_model['vocab'], use_deepspeed=False)
        model.device
        print("Computing speaker latents...")
        gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[target_voice_path])
    else:
        selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
        tts = TTS(selected_tts_model, progress_bar=False).to(device)

    if not os.path.exists(output_audio_dir):
        os.makedirs(output_audio_dir)

    for chapter_file in sorted(os.listdir(chapters_dir)):
        if chapter_file.endswith('.txt'):
            match = re.search(r"chapter_(\d+).txt", chapter_file)
            if match:
                chapter_num = int(match.group(1))
            else:
                print(f"Skipping file {chapter_file} as it does not match the expected format.")
                continue

            chapter_path = os.path.join(chapters_dir, chapter_file)
            output_file_name = f"audio_chapter_{chapter_num}.wav"
            output_file_path = os.path.join(output_audio_dir, output_file_name)
            temp_audio_directory = os.path.join(".", "Working_files", "temp")
            os.makedirs(temp_audio_directory, exist_ok=True)
            temp_count = 0

            with open(chapter_path, 'r', encoding='utf-8') as file:
                chapter_text = file.read()
                sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
                for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
                    fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
                    for fragment in fragments:
                        if fragment != "":
                            print(f"Generating fragment: {fragment}...")
                            fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
                            if custom_model:
                                out = model.inference(fragment, language, gpt_cond_latent, speaker_embedding, temperature=0.7)
                                torchaudio.save(fragment_file_path, torch.tensor(out["wav"]).unsqueeze(0), 24000)
                            else:
                                speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
                                language_code = language if language else default_language_code
                                tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
                            temp_count += 1

            combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
            wipe_folder(temp_audio_directory)
            print(f"Converted chapter {chapter_num} to audio.")

# Function to convert chapters to audio using standard model
def convert_chapters_to_audio_standard_model(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
    selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
    tts = TTS(selected_tts_model, progress_bar=False).to(device)

    if not os.path.exists(output_audio_dir):
        os.makedirs(output_audio_dir)

    for chapter_file in sorted(os.listdir(chapters_dir)):
        if chapter_file.endswith('.txt'):
            match = re.search(r"chapter_(\d+).txt", chapter_file)
            if match:
                chapter_num = int(match.group(1))
            else:
                print(f"Skipping file {chapter_file} as it does not match the expected format.")
                continue

            chapter_path = os.path.join(chapters_dir, chapter_file)
            output_file_name = f"audio_chapter_{chapter_num}.wav"
            output_file_path = os.path.join(output_audio_dir, output_file_name)
            temp_audio_directory = os.path.join(".", "Working_files", "temp")
            os.makedirs(temp_audio_directory, exist_ok=True)
            temp_count = 0

            with open(chapter_path, 'r', encoding='utf-8') as file:
                chapter_text = file.read()
                sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
                for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
                    fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
                    for fragment in fragments:
                        if fragment != "":
                            print(f"Generating fragment: {fragment}...")
                            fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
                            speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
                            language_code = language if language else default_language_code
                            tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
                            temp_count += 1

            combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
            wipe_folder(temp_audio_directory)
            print(f"Converted chapter {chapter_num} to audio.")

# Function to handle the processing of an eBook to an audiobook
def process_request(ebook_file, target_voice, language, email, use_custom_model, custom_model):
    working_files = os.path.join(".", "Working_files", "temp_ebook")
    full_folder_working_files = os.path.join(".", "Working_files")
    chapters_directory = os.path.join(".", "Working_files", "temp_ebook")
    output_audio_directory = os.path.join(".", 'Chapter_wav_files')
    remove_folder_with_contents(full_folder_working_files)
    remove_folder_with_contents(output_audio_directory)

    create_chapter_labeled_book(ebook_file.name)
    audiobook_output_path = os.path.join(".", "Audiobooks")
    
    if use_custom_model:
        convert_chapters_to_audio_custom_model(chapters_directory, output_audio_directory, target_voice, language, custom_model)
    else:
        convert_chapters_to_audio_standard_model(chapters_directory, output_audio_directory, target_voice, language)
    
    create_m4b_from_chapters(output_audio_directory, ebook_file.name, audiobook_output_path)

    m4b_filepath = os.path.join(audiobook_output_path, os.path.splitext(os.path.basename(ebook_file.name))[0] + '.m4b')
    
    # Upload the final audiobook to file.io
    with open(m4b_filepath, 'rb') as f:
        response = requests.post('https://file.io', files={'file': f})
        download_link = response.json().get('link', '')

    # Send the download link to the user's email
    if email and download_link:
        send_email(email, download_link)

    return download_link

# Function to manage the queue and process each request sequentially
def handle_queue():
    while True:
        ebook_file, target_voice, language, email, use_custom_model, custom_model = queue.get()
        process_request(ebook_file, target_voice, language, email, use_custom_model, custom_model)
        queue.task_done()

# Start the queue handler thread
thread = Thread(target=handle_queue, daemon=True)
thread.start()

# Gradio function to add a request to the queue
def enqueue_request(ebook_file, target_voice_file, language, email, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file, custom_model_url=None):
    target_voice = target_voice_file.name if target_voice_file else None
    custom_model = None

    if use_custom_model and custom_model_file and custom_config_file and custom_vocab_file:
        custom_model = {
            'model': custom_model_file.name,
            'config': custom_config_file.name,
            'vocab': custom_vocab_file.name
        }
    if use_custom_model and custom_model_url:
        download_dir = os.path.join(".", "Working_files", "custom_model")
        download_and_extract_zip(custom_model_url, download_dir)
        custom_model = {
            'model': os.path.join(download_dir, 'model.pth'),
            'config': os.path.join(download_dir, 'config.json'),
            'vocab': os.path.join(download_dir, 'vocab.json_')
        }

    # Add request to the queue
    queue_lock.acquire()
    queue.put((ebook_file, target_voice, language, email, use_custom_model, custom_model))
    position = queue.qsize()
    queue_lock.release()
    return f"Your request has been added to the queue. You are number {position} in line."

# Gradio UI setup
language_options = [
    "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko"
]

theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="blue",
    neutral_hue="blue",
    text_size=gr.themes.sizes.text_md,
)

with gr.Blocks(theme=theme) as demo:
    gr.Markdown(
    """
    # eBook to Audiobook Converter
    
    Transform your eBooks into immersive audiobooks with optional custom TTS models.
    """
    )
    
    with gr.Row():
        with gr.Column(scale=3):
            ebook_file = gr.File(label="eBook File")
            target_voice_file = gr.File(label="Target Voice File (Optional)")
            language = gr.Dropdown(label="Language", choices=language_options, value="en")
            email = gr.Textbox(label="Email Address")
        
        with gr.Column(scale=3):
            use_custom_model = gr.Checkbox(label="Use Custom Model")
            custom_model_file = gr.File(label="Custom Model File (Optional)", visible=False)
            custom_config_file = gr.File(label="Custom Config File (Optional)", visible=False)
            custom_vocab_file = gr.File(label="Custom Vocab File (Optional)", visible=False)
            custom_model_url = gr.Textbox(label="Custom Model Zip URL (Optional)", visible=False)

    convert_btn = gr.Button("Convert to Audiobook", variant="primary")
    queue_status = gr.Textbox(label="Queue Status")

    convert_btn.click(
        enqueue_request,
        inputs=[ebook_file, target_voice_file, language, email, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file, custom_model_url],
        outputs=[queue_status]
    )

    use_custom_model.change(
        lambda x: [gr.update(visible=x)] * 4,
        inputs=[use_custom_model],
        outputs=[custom_model_file, custom_config_file, custom_vocab_file, custom_model_url]
    )

demo.launch(share=True)