drewThomasson commited on
Commit
adad39b
1 Parent(s): 3c0bc7a

Upload 62 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. legacy/v1.0/Dockerfile +93 -0
  3. legacy/v1.0/LICENSE +21 -0
  4. legacy/v1.0/Notebooks/Kaggel Archive Code/4.wav +0 -0
  5. legacy/v1.0/Notebooks/Kaggel Archive Code/LICENSE +21 -0
  6. legacy/v1.0/Notebooks/Kaggel Archive Code/README.md +118 -0
  7. legacy/v1.0/Notebooks/Kaggel Archive Code/Worker_2T4.sh +59 -0
  8. legacy/v1.0/Notebooks/Kaggel Archive Code/default_voice.wav +0 -0
  9. legacy/v1.0/Notebooks/Kaggel Archive Code/demo_mini_story_chapters_Drew.epub +0 -0
  10. legacy/v1.0/Notebooks/Kaggel Archive Code/ebook2audiobook.py +462 -0
  11. legacy/v1.0/Notebooks/Kaggel Archive Code/kaggle-ebook2audiobook-demo.ipynb +1 -0
  12. legacy/v1.0/Notebooks/Kaggel Archive Code/p1.py +462 -0
  13. legacy/v1.0/Notebooks/Kaggel Archive Code/p2a_worker_gpu1.py +465 -0
  14. legacy/v1.0/Notebooks/Kaggel Archive Code/p2a_worker_gpu2.py +465 -0
  15. legacy/v1.0/Notebooks/Kaggel Archive Code/p3.py +462 -0
  16. legacy/v1.0/Notebooks/colab_ebook2audiobookxtts.ipynb +106 -0
  17. legacy/v1.0/Notebooks/kaggle-beta-of-ebook2audiobookxtts-ipynb.ipynb +1 -0
  18. legacy/v1.0/README.md +478 -0
  19. legacy/v1.0/app.py +1041 -0
  20. legacy/v1.0/default_voice.wav +0 -0
  21. legacy/v1.0/demo_mini_story_chapters_Drew.epub +0 -0
  22. legacy/v1.0/demo_web_gui.gif +3 -0
  23. legacy/v1.0/legacy/custom_model_ebook2audiobookXTTS.py +484 -0
  24. legacy/v1.0/legacy/custom_model_ebook2audiobookXTTS_gradio.py +609 -0
  25. legacy/v1.0/legacy/custom_model_ebook2audiobookXTTS_with_link_gradio.py +700 -0
  26. legacy/v1.0/legacy/ebook2audiobook.py +462 -0
  27. legacy/v1.0/legacy/gradio_gui_with_email_and_que.py +614 -0
  28. legacy/v1.0/legacy/install.bat +18 -0
  29. legacy/v1.0/legacy/install.ps1 +255 -0
  30. legacy/v1.0/legacy/install.sh +171 -0
  31. legacy/v1.0/readme/README_CN.md +428 -0
  32. legacy/v1.0/readme/README_RU.md +387 -0
  33. legacy/v1.0/samples/Supported_language_sample__generated_outputs/ar.m4b +0 -0
  34. legacy/v1.0/samples/Supported_language_sample__generated_outputs/cs.m4b +0 -0
  35. legacy/v1.0/samples/Supported_language_sample__generated_outputs/de.m4b +0 -0
  36. legacy/v1.0/samples/Supported_language_sample__generated_outputs/en.m4b +0 -0
  37. legacy/v1.0/samples/Supported_language_sample__generated_outputs/es.m4b +0 -0
  38. legacy/v1.0/samples/Supported_language_sample__generated_outputs/fr.m4b +0 -0
  39. legacy/v1.0/samples/Supported_language_sample__generated_outputs/hu.m4b +0 -0
  40. legacy/v1.0/samples/Supported_language_sample__generated_outputs/it.m4b +0 -0
  41. legacy/v1.0/samples/Supported_language_sample__generated_outputs/ko.m4b +0 -0
  42. legacy/v1.0/samples/Supported_language_sample__generated_outputs/nl.m4b +0 -0
  43. legacy/v1.0/samples/Supported_language_sample__generated_outputs/pl.m4b +0 -0
  44. legacy/v1.0/samples/Supported_language_sample__generated_outputs/pt.m4b +0 -0
  45. legacy/v1.0/samples/Supported_language_sample__generated_outputs/ru.m4b +0 -0
  46. legacy/v1.0/samples/Supported_language_sample__generated_outputs/tr.m4b +0 -0
  47. legacy/v1.0/samples/Supported_language_sample__generated_outputs/zh-cn.m4b +0 -0
  48. legacy/v1.0/samples/Supported_language_sample_texts/ar.txt +1 -0
  49. legacy/v1.0/samples/Supported_language_sample_texts/cs.txt +1 -0
  50. legacy/v1.0/samples/Supported_language_sample_texts/de.txt +1 -0
.gitattributes CHANGED
@@ -43,3 +43,4 @@ voices/eng/elder/male/JhonButlerASMR_22khz.wav filter=lfs diff=lfs merge=lfs -te
43
  voices/eng/elder/male/JhonButlerASMR_24khz.wav filter=lfs diff=lfs merge=lfs -text
44
  voices/fra/elder/male/default_voice.wav filter=lfs diff=lfs merge=lfs -text
45
  voices/eng/adult/male/BryanCranston_16khz.wav filter=lfs diff=lfs merge=lfs -text
 
 
43
  voices/eng/elder/male/JhonButlerASMR_24khz.wav filter=lfs diff=lfs merge=lfs -text
44
  voices/fra/elder/male/default_voice.wav filter=lfs diff=lfs merge=lfs -text
45
  voices/eng/adult/male/BryanCranston_16khz.wav filter=lfs diff=lfs merge=lfs -text
46
+ legacy/v1.0/demo_web_gui.gif filter=lfs diff=lfs merge=lfs -text
legacy/v1.0/Dockerfile ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use an official NVIDIA CUDA image with cudnn8 and Ubuntu 20.04 as the base
2
+ FROM nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu20.04
3
+
4
+ # Set non-interactive installation to avoid timezone and other prompts
5
+ ENV DEBIAN_FRONTEND=noninteractive
6
+
7
+ # Install necessary packages including Miniconda
8
+ RUN apt-get update && apt-get install -y --no-install-recommends \
9
+ wget \
10
+ git \
11
+ espeak \
12
+ espeak-ng \
13
+ ffmpeg \
14
+ tk \
15
+ mecab \
16
+ libmecab-dev \
17
+ mecab-ipadic-utf8 \
18
+ build-essential \
19
+ calibre \
20
+ && rm -rf /var/lib/apt/lists/*
21
+
22
+ RUN ebook-convert --version
23
+
24
+ # Install Miniconda
25
+ RUN wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh && \
26
+ bash ~/miniconda.sh -b -p /opt/conda && \
27
+ rm ~/miniconda.sh
28
+
29
+
30
+
31
+ # Set PATH to include conda
32
+ ENV PATH=/opt/conda/bin:$PATH
33
+
34
+ # Create a conda environment with Python 3.10
35
+ RUN conda create -n ebookenv python=3.10 -y
36
+
37
+ # Activate the conda environment
38
+ SHELL ["conda", "run", "-n", "ebookenv", "/bin/bash", "-c"]
39
+
40
+ # Install Python dependencies using conda and pip
41
+ RUN conda install -n ebookenv -c conda-forge \
42
+ pydub \
43
+ nltk \
44
+ mecab-python3 \
45
+ && pip install --no-cache-dir \
46
+ bs4 \
47
+ beautifulsoup4 \
48
+ ebooklib \
49
+ tqdm \
50
+ tts==0.21.3 \
51
+ unidic \
52
+ gradio
53
+
54
+ # Download unidic
55
+ RUN python -m unidic download
56
+
57
+ # Set the working directory in the container
58
+ WORKDIR /ebook2audiobookXTTS
59
+
60
+ # Clone the ebook2audiobookXTTS repository
61
+ RUN git clone https://github.com/DrewThomasson/ebook2audiobookXTTS.git .
62
+
63
+ # Copy test audio file
64
+ COPY default_voice.wav /ebook2audiobookXTTS/
65
+
66
+ # Run a test to set up XTTS
67
+ RUN echo "import torch" > /tmp/script1.py && \
68
+ echo "from TTS.api import TTS" >> /tmp/script1.py && \
69
+ echo "device = 'cuda' if torch.cuda.is_available() else 'cpu'" >> /tmp/script1.py && \
70
+ echo "print(TTS().list_models())" >> /tmp/script1.py && \
71
+ echo "tts = TTS('tts_models/multilingual/multi-dataset/xtts_v2').to(device)" >> /tmp/script1.py && \
72
+ echo "wav = tts.tts(text='Hello world!', speaker_wav='default_voice.wav', language='en')" >> /tmp/script1.py && \
73
+ echo "tts.tts_to_file(text='Hello world!', speaker_wav='default_voice.wav', language='en', file_path='output.wav')" >> /tmp/script1.py && \
74
+ yes | python /tmp/script1.py
75
+
76
+ # Remove the test audio file
77
+ RUN rm -f /ebook2audiobookXTTS/output.wav
78
+
79
+ # Verify that the script exists and has the correct permissions
80
+ RUN ls -la /ebook2audiobookXTTS/
81
+
82
+ # Check if the script exists and log its presence
83
+ RUN if [ -f /ebook2audiobookXTTS/custom_model_ebook2audiobookXTTS_with_link_gradio.py ]; then echo "Script found."; else echo "Script not found."; exit 1; fi
84
+
85
+ # Modify the Python script to set share=True
86
+ RUN sed -i 's/demo.launch(share=False)/demo.launch(share=True)/' /ebook2audiobookXTTS/custom_model_ebook2audiobookXTTS_with_link_gradio.py
87
+
88
+ # Download the punkt package for nltk
89
+ RUN python -m nltk.downloader punkt
90
+
91
+ # Set the command to run your GUI application using the conda environment
92
+ CMD ["conda", "run", "--no-capture-output", "-n", "ebookenv", "python", "/ebook2audiobookXTTS/custom_model_ebook2audiobookXTTS_with_link_gradio.py"]
93
+
legacy/v1.0/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Drew Thomasson
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
legacy/v1.0/Notebooks/Kaggel Archive Code/4.wav ADDED
Binary file (543 kB). View file
 
legacy/v1.0/Notebooks/Kaggel Archive Code/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Drew Thomasson
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
legacy/v1.0/Notebooks/Kaggel Archive Code/README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # this is a sample for running on kaggle and it may not be updated frequently
2
+
3
+ # ebook2audiobook kaggle eddition
4
+ Generates an audiobook with chapters and ebook metadata using Calibre and Xtts from Coqui tts, and with optional voice cloning, and supports multiple languages
5
+
6
+ # import this notebook to kaggle
7
+ https://github.com/Rihcus/ebook2audiobookXTTS/blob/main/kaggle-ebook2audiobook-demo.ipynb
8
+
9
+ ## Features
10
+
11
+ - Converts eBooks to text format using Calibre's `ebook-convert` tool.
12
+ - Splits the eBook into chapters for structured audio conversion.
13
+ - Uses XTTS from Coqui TTS for high-quality text-to-speech conversion.
14
+ - Optional voice cloning feature using a provided voice file.
15
+ - Supports different languages for text-to-speech conversion, with English as the default.
16
+ - Confirmed to run on only 4 gb ram
17
+
18
+ ## Requirements
19
+
20
+ - Python 3.x
21
+ - `coqui-tts` Python package
22
+ - Calibre (for eBook conversion)
23
+ - FFmpeg (for audiobook file creation)
24
+ - Optional: Custom voice file for voice cloning
25
+
26
+ ### Installation Instructions for Dependencies
27
+
28
+ Install Python 3.x from [Python.org](https://www.python.org/downloads/).
29
+
30
+ Install Calibre:
31
+ - Ubuntu: `sudo apt-get install -y calibre`
32
+ - macOS: `brew install calibre`
33
+ - Windows(Powershell in Administrator mode): `choco install calibre`
34
+
35
+ Install FFmpeg:
36
+ - Ubuntu: `sudo apt-get install -y ffmpeg`
37
+ - macOS: `brew install ffmpeg`
38
+ - Windows(Powershell in Administrator mode): `choco install ffmpeg`
39
+
40
+ Install Mecab for (Non Latin-based Languages tts support)(Optional):
41
+ - Ubuntu: `sudo apt-get install -y mecab libmecab-dev mecab-ipadic-utf8`
42
+ - macOS: `brew install mecab`, `brew install mecab-ipadic`
43
+ - Windows(Powershell in Administrator mode no support for mecab-ipadic easy install so no Japanese for windows :/): `choco install mecab `
44
+
45
+ Install Python packages:
46
+ ```bash
47
+ pip install tts pydub nltk beautifulsoup4 ebooklib tqdm
48
+ ```
49
+ (For non Latin-based Languages tts support)(Optional)
50
+ `python -m unidic download`
51
+ ```bash
52
+ pip install mecab mecab-python3 unidic
53
+ ```
54
+
55
+ ### Supported Languages
56
+
57
+ The script supports the following languages for text-to-speech conversion:
58
+
59
+ English (en),
60
+ Spanish (es),
61
+ French (fr),
62
+ German (de),
63
+ Italian (it),
64
+ Portuguese (pt),
65
+ Polish (pl),
66
+ Turkish (tr),
67
+ Russian (ru),
68
+ Dutch (nl),
69
+ Czech (cs),
70
+ Arabic (ar),
71
+ Chinese (zh-cn),
72
+ Japanese (ja),
73
+ Hungarian (hu),
74
+ Korean (ko)
75
+
76
+ Specify the language code when running the script to use these languages.
77
+
78
+ ### Usage
79
+
80
+ Navigate to the script's directory in the terminal and execute one of the following commands:
81
+ If you have any trouble getting it to run in Windows then it should run fine in WSL2
82
+
83
+ Basic Usage: ALL PARAMETERS ARE MANDATORY WHEN CALLED THE SCRIPT
84
+
85
+ ```bash
86
+ python ebook2audiobook.py <path_to_ebook_file> [path_to_voice_file] [language_code]
87
+ ```
88
+ Replace <path_to_ebook_file> with the path to your eBook file.
89
+ include <path_to_voice_file> for voice cloning.
90
+ include <language_code> to specify the language
91
+
92
+
93
+ ## Demo
94
+
95
+
96
+
97
+ https://github.com/DrewThomasson/ebook2audiobookXTTS/assets/126999465/bccd7240-f967-4d27-a87d-445034db7d21
98
+
99
+
100
+
101
+ ### Supported ebook File Types:
102
+ .epub, .pdf, .mobi, .txt, .html, .rtf, .chm, .lit, .pdb, .fb2, .odt, .cbr, .cbz, .prc, .lrf, .pml, .snb, .cbc, .rb, and .tcr,
103
+ (Best results are from using epub or mobi for auto chapter detection)
104
+
105
+ ### outputs as a m4b with all book metadata and chapters, example output file in an audiobook player app
106
+ ![Example_of_output_in_audiobook_program](https://github.com/DrewThomasson/VoxNovel/blob/dc5197dff97252fa44c391dc0596902d71278a88/readme_files/example_in_app.jpeg)
107
+
108
+ A special thanks to the creaters of:
109
+
110
+
111
+ -Coqui TTS
112
+
113
+ -https://github.com/coqui-ai/TTS
114
+
115
+
116
+ -Calibre
117
+
118
+ -https://calibre-ebook.com
legacy/v1.0/Notebooks/Kaggel Archive Code/Worker_2T4.sh ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ workers=$1
4
+
5
+ # Clean up operator directory
6
+ rm -rf "./Operator"
7
+ rm -rf "./Chapter_wav_files"
8
+ mkdir "./Operator"
9
+ mkdir "./Chapter_wav_files"
10
+
11
+
12
+ # Make appropriate temp directories
13
+ for i in $(seq 1 $workers); do
14
+ mkdir "./Operator/$i"
15
+ mkdir "./Operator/$i/temp"
16
+ mkdir "./Operator/$i/temp_ebook"
17
+ done
18
+
19
+ echo "Created $workers directories"
20
+
21
+ #Divide the chapters
22
+ share=1
23
+ for FILE in ./Working_files/temp_ebook/*; do
24
+ cp $FILE "./Operator/$share/temp_ebook/"
25
+ if [ $share -lt $workers ];
26
+ then
27
+ share=$((share+1))
28
+ else
29
+ share=1
30
+ fi
31
+ done
32
+
33
+ echo "Split chapters into operator"
34
+
35
+ #Run audio generation
36
+ #for i in $(seq 1 $workers); do
37
+ # echo "Starting Worker $i"
38
+ # python p2a_worker.py $i &
39
+ #done
40
+
41
+ gpu=1
42
+ for i in $(seq 1 $workers); do
43
+ if [ $gpu -lt 2 ];
44
+ then
45
+ echo "Starting Worker $i on GPU 1"
46
+ python p2a_worker_gpu1.py $i & #Run audio generation GPU 1 T4
47
+ gpu=2 # switch to gpu 2 on next loop
48
+ else
49
+ echo "Starting Worker $i on GPU 2"
50
+ python p2a_worker_gpu2.py $i & #Run audio generation GPU 2 T4
51
+ gpu=1 # switch to gpu 1 on next loop
52
+ fi
53
+ done
54
+
55
+
56
+
57
+ echo "All workers started waiting for completion...."
58
+ wait
59
+ echo "Done!"
legacy/v1.0/Notebooks/Kaggel Archive Code/default_voice.wav ADDED
Binary file (291 kB). View file
 
legacy/v1.0/Notebooks/Kaggel Archive Code/demo_mini_story_chapters_Drew.epub ADDED
Binary file (415 kB). View file
 
legacy/v1.0/Notebooks/Kaggel Archive Code/ebook2audiobook.py ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+
3
+ import os
4
+ import shutil
5
+ import subprocess
6
+ import re
7
+ from pydub import AudioSegment
8
+ import tempfile
9
+ from pydub import AudioSegment
10
+ import os
11
+ import nltk
12
+ from nltk.tokenize import sent_tokenize
13
+ nltk.download('punkt') # Make sure to download the necessary models
14
+ def is_folder_empty(folder_path):
15
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
16
+ # List directory contents
17
+ if not os.listdir(folder_path):
18
+ return True # The folder is empty
19
+ else:
20
+ return False # The folder is not empty
21
+ else:
22
+ print(f"The path {folder_path} is not a valid folder.")
23
+ return None # The path is not a valid folder
24
+
25
+ def remove_folder_with_contents(folder_path):
26
+ try:
27
+ shutil.rmtree(folder_path)
28
+ print(f"Successfully removed {folder_path} and all of its contents.")
29
+ except Exception as e:
30
+ print(f"Error removing {folder_path}: {e}")
31
+
32
+
33
+
34
+
35
+ def wipe_folder(folder_path):
36
+ # Check if the folder exists
37
+ if not os.path.exists(folder_path):
38
+ print(f"The folder {folder_path} does not exist.")
39
+ return
40
+
41
+ # Iterate over all the items in the given folder
42
+ for item in os.listdir(folder_path):
43
+ item_path = os.path.join(folder_path, item)
44
+ # If it's a file, remove it and print a message
45
+ if os.path.isfile(item_path):
46
+ os.remove(item_path)
47
+ print(f"Removed file: {item_path}")
48
+ # If it's a directory, remove it recursively and print a message
49
+ elif os.path.isdir(item_path):
50
+ shutil.rmtree(item_path)
51
+ print(f"Removed directory and its contents: {item_path}")
52
+
53
+ print(f"All contents wiped from {folder_path}.")
54
+
55
+
56
+ # Example usage
57
+ # folder_to_wipe = 'path_to_your_folder'
58
+ # wipe_folder(folder_to_wipe)
59
+
60
+
61
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
62
+ # Function to sort chapters based on their numeric order
63
+ def sort_key(chapter_file):
64
+ numbers = re.findall(r'\d+', chapter_file)
65
+ return int(numbers[0]) if numbers else 0
66
+
67
+ # Extract metadata and cover image from the eBook file
68
+ def extract_metadata_and_cover(ebook_path):
69
+ try:
70
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
71
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
72
+ if os.path.exists(cover_path):
73
+ return cover_path
74
+ except Exception as e:
75
+ print(f"Error extracting eBook metadata or cover: {e}")
76
+ return None
77
+ # Combine WAV files into a single file
78
+ def combine_wav_files(chapter_files, output_path):
79
+ # Initialize an empty audio segment
80
+ combined_audio = AudioSegment.empty()
81
+
82
+ # Sequentially append each file to the combined_audio
83
+ for chapter_file in chapter_files:
84
+ audio_segment = AudioSegment.from_wav(chapter_file)
85
+ combined_audio += audio_segment
86
+ # Export the combined audio to the output file path
87
+ combined_audio.export(output_path, format='wav')
88
+ print(f"Combined audio saved to {output_path}")
89
+
90
+ # Function to generate metadata for M4B chapters
91
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
92
+ with open(metadata_file, 'w') as file:
93
+ file.write(';FFMETADATA1\n')
94
+ start_time = 0
95
+ for index, chapter_file in enumerate(chapter_files):
96
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
97
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
98
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
99
+ start_time += duration_ms
100
+
101
+ # Generate the final M4B file using ffmpeg
102
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
103
+ # Ensure the output directory exists
104
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
105
+
106
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
107
+ if cover_image:
108
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
109
+ else:
110
+ ffmpeg_cmd += ['-map', '0:a']
111
+
112
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
113
+ if cover_image:
114
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
115
+ ffmpeg_cmd += [output_m4b]
116
+
117
+ subprocess.run(ffmpeg_cmd, check=True)
118
+
119
+
120
+
121
+ # Main logic
122
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
123
+ temp_dir = tempfile.gettempdir()
124
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
125
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
126
+ cover_image = extract_metadata_and_cover(ebook_file)
127
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
128
+
129
+ combine_wav_files(chapter_files, temp_combined_wav)
130
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
131
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
132
+
133
+ # Cleanup
134
+ if os.path.exists(temp_combined_wav):
135
+ os.remove(temp_combined_wav)
136
+ if os.path.exists(metadata_file):
137
+ os.remove(metadata_file)
138
+ if cover_image and os.path.exists(cover_image):
139
+ os.remove(cover_image)
140
+
141
+ # Example usage
142
+ # create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')
143
+
144
+
145
+
146
+
147
+
148
+
149
+ #this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
150
+ import os
151
+ import subprocess
152
+ import ebooklib
153
+ from ebooklib import epub
154
+ from bs4 import BeautifulSoup
155
+ import re
156
+ import csv
157
+ import nltk
158
+
159
+ # Only run the main script if Value is True
160
+ def create_chapter_labeled_book(ebook_file_path):
161
+ # Function to ensure the existence of a directory
162
+ def ensure_directory(directory_path):
163
+ if not os.path.exists(directory_path):
164
+ os.makedirs(directory_path)
165
+ print(f"Created directory: {directory_path}")
166
+
167
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
168
+
169
+ def convert_to_epub(input_path, output_path):
170
+ # Convert the ebook to EPUB format using Calibre's ebook-convert
171
+ try:
172
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
173
+ except subprocess.CalledProcessError as e:
174
+ print(f"An error occurred while converting the eBook: {e}")
175
+ return False
176
+ return True
177
+
178
+ def save_chapters_as_text(epub_path):
179
+ # Create the directory if it doesn't exist
180
+ directory = os.path.join(".", "Working_files", "temp_ebook")
181
+ ensure_directory(directory)
182
+
183
+ # Open the EPUB file
184
+ book = epub.read_epub(epub_path)
185
+
186
+ previous_chapter_text = ''
187
+ previous_filename = ''
188
+ chapter_counter = 0
189
+
190
+ # Iterate through the items in the EPUB file
191
+ for item in book.get_items():
192
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
193
+ # Use BeautifulSoup to parse HTML content
194
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
195
+ text = soup.get_text()
196
+
197
+ # Check if the text is not empty
198
+ if text.strip():
199
+ if len(text) < 2300 and previous_filename:
200
+ # Append text to the previous chapter if it's short
201
+ with open(previous_filename, 'a', encoding='utf-8') as file:
202
+ file.write('\n' + text)
203
+ else:
204
+ # Create a new chapter file and increment the counter
205
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
206
+ chapter_counter += 1
207
+ with open(previous_filename, 'w', encoding='utf-8') as file:
208
+ file.write(text)
209
+ print(f"Saved chapter: {previous_filename}")
210
+
211
+ # Example usage
212
+ input_ebook = ebook_file_path # Replace with your eBook file path
213
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
214
+
215
+
216
+ if os.path.exists(output_epub):
217
+ os.remove(output_epub)
218
+ print(f"File {output_epub} has been removed.")
219
+ else:
220
+ print(f"The file {output_epub} does not exist.")
221
+
222
+ if convert_to_epub(input_ebook, output_epub):
223
+ save_chapters_as_text(output_epub)
224
+
225
+ # Download the necessary NLTK data (if not already present)
226
+ nltk.download('punkt')
227
+
228
+ def process_chapter_files(folder_path, output_csv):
229
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
230
+ writer = csv.writer(csvfile)
231
+ # Write the header row
232
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
233
+
234
+ # Process each chapter file
235
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
236
+ for filename in chapter_files:
237
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
238
+ chapter_number = int(filename.split('_')[1].split('.')[0])
239
+ file_path = os.path.join(folder_path, filename)
240
+
241
+ try:
242
+ with open(file_path, 'r', encoding='utf-8') as file:
243
+ text = file.read()
244
+ # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
245
+ if text:
246
+ text = "NEWCHAPTERABC" + text
247
+ sentences = nltk.tokenize.sent_tokenize(text)
248
+ for sentence in sentences:
249
+ start_location = text.find(sentence)
250
+ end_location = start_location + len(sentence)
251
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
252
+ except Exception as e:
253
+ print(f"Error processing file {filename}: {e}")
254
+
255
+ # Example usage
256
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
257
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
258
+
259
+ process_chapter_files(folder_path, output_csv)
260
+
261
+ def sort_key(filename):
262
+ """Extract chapter number for sorting."""
263
+ match = re.search(r'chapter_(\d+)\.txt', filename)
264
+ return int(match.group(1)) if match else 0
265
+
266
+ def combine_chapters(input_folder, output_file):
267
+ # Create the output folder if it doesn't exist
268
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
269
+
270
+ # List all txt files and sort them by chapter number
271
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
272
+ sorted_files = sorted(files, key=sort_key)
273
+
274
+ with open(output_file, 'w', encoding='utf-8') as outfile: # Specify UTF-8 encoding here
275
+ for i, filename in enumerate(sorted_files):
276
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile: # And here
277
+ outfile.write(infile.read())
278
+ # Add the marker unless it's the last file
279
+ if i < len(sorted_files) - 1:
280
+ outfile.write("\nNEWCHAPTERABC\n")
281
+
282
+ # Paths
283
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
284
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
285
+
286
+
287
+ # Combine the chapters
288
+ combine_chapters(input_folder, output_file)
289
+
290
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
291
+
292
+
293
+ #create_chapter_labeled_book()
294
+
295
+
296
+
297
+
298
+ import os
299
+ import subprocess
300
+ import sys
301
+ import torchaudio
302
+
303
+ # Check if Calibre's ebook-convert tool is installed
304
+ def calibre_installed():
305
+ try:
306
+ subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
307
+ return True
308
+ except FileNotFoundError:
309
+ print("Calibre is not installed. Please install Calibre for this functionality.")
310
+ return False
311
+
312
+
313
+ import os
314
+ import torch
315
+ from TTS.api import TTS
316
+ from nltk.tokenize import sent_tokenize
317
+ from pydub import AudioSegment
318
+ # Assuming split_long_sentence and wipe_folder are defined elsewhere in your code
319
+
320
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
321
+ default_language_code = "en"
322
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
323
+
324
+ def combine_wav_files(input_directory, output_directory, file_name):
325
+ # Ensure that the output directory exists, create it if necessary
326
+ os.makedirs(output_directory, exist_ok=True)
327
+
328
+ # Specify the output file path
329
+ output_file_path = os.path.join(output_directory, file_name)
330
+
331
+ # Initialize an empty audio segment
332
+ combined_audio = AudioSegment.empty()
333
+
334
+ # Get a list of all .wav files in the specified input directory and sort them
335
+ input_file_paths = sorted(
336
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
337
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
338
+ )
339
+
340
+ # Sequentially append each file to the combined_audio
341
+ for input_file_path in input_file_paths:
342
+ audio_segment = AudioSegment.from_wav(input_file_path)
343
+ combined_audio += audio_segment
344
+
345
+ # Export the combined audio to the output file path
346
+ combined_audio.export(output_file_path, format='wav')
347
+
348
+ print(f"Combined audio saved to {output_file_path}")
349
+
350
+ # Function to split long strings into parts
351
+ def split_long_sentence(sentence, max_length=249, max_pauses=10):
352
+ """
353
+ Splits a sentence into parts based on length or number of pauses without recursion.
354
+
355
+ :param sentence: The sentence to split.
356
+ :param max_length: Maximum allowed length of a sentence.
357
+ :param max_pauses: Maximum allowed number of pauses in a sentence.
358
+ :return: A list of sentence parts that meet the criteria.
359
+ """
360
+ parts = []
361
+ while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
362
+ possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
363
+ if possible_splits:
364
+ # Find the best place to split the sentence, preferring the last possible split to keep parts longer
365
+ split_at = possible_splits[-1] + 1
366
+ else:
367
+ # If no punctuation to split on within max_length, split at max_length
368
+ split_at = max_length
369
+
370
+ # Split the sentence and add the first part to the list
371
+ parts.append(sentence[:split_at].strip())
372
+ sentence = sentence[split_at:].strip()
373
+
374
+ # Add the remaining part of the sentence
375
+ parts.append(sentence)
376
+ return parts
377
+
378
+ """
379
+ if 'tts' not in locals():
380
+ tts = TTS(selected_tts_model, progress_bar=True).to(device)
381
+ """
382
+ from tqdm import tqdm
383
+
384
+ # Convert chapters to audio using XTTS
385
+ def convert_chapters_to_audio(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
386
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
387
+ tts = TTS(selected_tts_model, progress_bar=False).to(device) # Set progress_bar to False to avoid nested progress bars
388
+
389
+ if not os.path.exists(output_audio_dir):
390
+ os.makedirs(output_audio_dir)
391
+
392
+ for chapter_file in sorted(os.listdir(chapters_dir)):
393
+ if chapter_file.endswith('.txt'):
394
+ # Extract chapter number from the filename
395
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
396
+ if match:
397
+ chapter_num = int(match.group(1))
398
+ else:
399
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
400
+ continue
401
+
402
+ chapter_path = os.path.join(chapters_dir, chapter_file)
403
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
404
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
405
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
406
+ os.makedirs(temp_audio_directory, exist_ok=True)
407
+ temp_count = 0
408
+
409
+ with open(chapter_path, 'r', encoding='utf-8') as file:
410
+ chapter_text = file.read()
411
+ # Use the specified language model for sentence tokenization
412
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
413
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
414
+ fragments = []
415
+ if language == "en":
416
+ fragments = split_long_sentence(sentence, max_length=249, max_pauses=10)
417
+ if language == "it":
418
+ fragments = split_long_sentence(sentence, max_length=213, max_pauses=10)
419
+ for fragment in fragments:
420
+ if fragment != "": #a hot fix to avoid blank fragments
421
+ print(f"Generating fragment: {fragment}...")
422
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
423
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
424
+ language_code = language if language else default_language_code
425
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
426
+ temp_count += 1
427
+
428
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
429
+ wipe_folder(temp_audio_directory)
430
+ print(f"Converted chapter {chapter_num} to audio.")
431
+
432
+
433
+
434
+ # Main execution flow
435
+ if __name__ == "__main__":
436
+ if len(sys.argv) < 2:
437
+ print("Usage: python script.py <ebook_file_path> [target_voice_file_path]")
438
+ sys.exit(1)
439
+
440
+ ebook_file_path = sys.argv[1]
441
+ target_voice = sys.argv[2] if len(sys.argv) > 2 else None
442
+ language = sys.argv[3] if len(sys.argv) > 3 else None
443
+
444
+ if not calibre_installed():
445
+ sys.exit(1)
446
+
447
+ working_files = os.path.join(".","Working_files", "temp_ebook")
448
+ full_folder_working_files =os.path.join(".","Working_files")
449
+ chapters_directory = os.path.join(".","Working_files", "temp_ebook")
450
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
451
+
452
+ print("Wiping and removeing Working_files folder...")
453
+ remove_folder_with_contents(full_folder_working_files)
454
+
455
+ print("Wiping and and removeing chapter_wav_files folder...")
456
+ remove_folder_with_contents(output_audio_directory)
457
+
458
+ create_chapter_labeled_book(ebook_file_path)
459
+ audiobook_output_path = os.path.join(".", "Audiobooks")
460
+ print(f"{chapters_directory}||||{output_audio_directory}|||||{target_voice}")
461
+ convert_chapters_to_audio(chapters_directory, output_audio_directory, target_voice, language)
462
+ create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
legacy/v1.0/Notebooks/Kaggel Archive Code/kaggle-ebook2audiobook-demo.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.10.13","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"},"kaggle":{"accelerator":"nvidiaTeslaT4","dataSources":[],"dockerImageVersionId":30733,"isInternetEnabled":true,"language":"python","sourceType":"notebook","isGpuEnabled":true}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"markdown","source":"Install depdenencies","metadata":{}},{"cell_type":"code","source":"#!DEBIAN_FRONTEND=noninteractive\n!sudo apt-get update # && sudo apt-get -y upgrade\n!sudo apt-get -y install libegl1 \n!sudo apt-get -y install libopengl0\n!sudo apt-get -y install libxcb-cursor0\n!sudo -v && wget -nv -O- https://download.calibre-ebook.com/linux-installer.sh | sudo sh /dev/stdin\n!sudo apt-get install -y ffmpeg\n!pip install tts pydub nltk beautifulsoup4 ebooklib tqdm\n!pip install numpy==1.26.4","metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","execution":{"iopub.status.busy":"2024-06-17T21:17:43.474429Z","iopub.execute_input":"2024-06-17T21:17:43.474679Z","iopub.status.idle":"2024-06-17T21:20:20.992799Z","shell.execute_reply.started":"2024-06-17T21:17:43.474655Z","shell.execute_reply":"2024-06-17T21:20:20.991791Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"Download modified ebook2audiobookXTTS\nhttps://github.com/Rihcus/ebook2audiobookXTTS\n\nOrigional unmodified version\nhttps://github.com/DrewThomasson/ebook2audiobookXTTS","metadata":{}},{"cell_type":"code","source":"!git clone https://github.com/Rihcus/ebook2audiobookXTTS","metadata":{"execution":{"iopub.status.busy":"2024-03-25T23:22:24.156772Z","iopub.execute_input":"2024-03-25T23:22:24.157618Z","iopub.status.idle":"2024-03-25T23:22:26.202486Z","shell.execute_reply.started":"2024-03-25T23:22:24.157577Z","shell.execute_reply":"2024-03-25T23:22:26.201179Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"(optional) Uploading your own epub book.\n\nBy default this notebook will use a sample epub book for testing/demo. \n\nIf you want to use your own book you will need to create a private kaggle data set, upload your epub to it, attach it to this notebook, and uncomment the two lines of code bellow, and update the data set path","metadata":{}},{"cell_type":"code","source":"# !cp -r /kaggle/input/<name of your attached dataset>/*.epub /kaggle/working/ebook2audiobookXTTS #copy your custom book\n# !rm /kaggle/working/ebook2audiobookXTTS/demo_mini_story_chapters_Drew.epub #remove default sample book","metadata":{},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"This to install xtts_v2 models","metadata":{}},{"cell_type":"code","source":"import os\nos.environ[\"COQUI_TOS_AGREED\"] = \"1\"\n\n!cd /kaggle/working/ebook2audiobookXTTS && tts --model_name tts_models/multilingual/multi-dataset/xtts_v2 --text \"test\" --speaker_wav ./4.wav --language_idx en --use_cuda true","metadata":{"execution":{"iopub.status.busy":"2024-03-25T23:23:15.626677Z","iopub.execute_input":"2024-03-25T23:23:15.627585Z","iopub.status.idle":"2024-03-25T23:27:40.712856Z","shell.execute_reply.started":"2024-03-25T23:23:15.627548Z","shell.execute_reply":"2024-03-25T23:27:40.711852Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"This is a modified version of ebook2audiobookXTTS. \n\n- p1.py only runs the first part ebook2audiobookXTTS and generates chapter txts (I commented out other parts)\n - https://github.com/Rihcus/ebook2audiobookXTTS/blob/main/p1.py\n- Worker_2T4.sh as a basic attempt at multigpu support. The 4 argument processes of ebook2audiobook will be run in parallel\n - Worker_2T4 will try to divide the chapter in even groups based on number of workers (ex 4 group 4 workers)\n - It will try to divy up the work between kaggles two T4 GPUS\n - I'm not sure how much of a difference it makes since kaggles cpu limitations\n \nhttps://github.com/Rihcus/ebook2audiobookXTTS/blob/main/Worker_2T4.sh\n\nhttps://github.com/Rihcus/ebook2audiobookXTTS/blob/main/p2a_worker_gpu1.py\n\nhttps://github.com/Rihcus/ebook2audiobookXTTS/blob/main/p2a_worker_gpu2.py","metadata":{}},{"cell_type":"code","source":"!cd /kaggle/working/ebook2audiobookXTTS && python p1.py \"$(ls ./*.epub)\" \"4.wav\" \"en\"\n!cd /kaggle/working/ebook2audiobookXTTS && bash Worker_2T4.sh 4","metadata":{},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"p3.py runs the final ffmpeg command. ffmpeg has been a bit buggy\nhttps://github.com/Rihcus/ebook2audiobookXTTS/blob/main/p3.py","metadata":{}},{"cell_type":"code","source":"!cd /kaggle/working/ebook2audiobookXTTS && python p3.py \"$(ls ./*.epub)\" \"4.wav\" \"en\"","metadata":{},"execution_count":null,"outputs":[]}]}
legacy/v1.0/Notebooks/Kaggel Archive Code/p1.py ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+
3
+ import os
4
+ import shutil
5
+ import subprocess
6
+ import re
7
+ from pydub import AudioSegment
8
+ import tempfile
9
+ from pydub import AudioSegment
10
+ import os
11
+ import nltk
12
+ from nltk.tokenize import sent_tokenize
13
+ nltk.download('punkt') # Make sure to download the necessary models
14
+ def is_folder_empty(folder_path):
15
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
16
+ # List directory contents
17
+ if not os.listdir(folder_path):
18
+ return True # The folder is empty
19
+ else:
20
+ return False # The folder is not empty
21
+ else:
22
+ print(f"The path {folder_path} is not a valid folder.")
23
+ return None # The path is not a valid folder
24
+
25
+ def remove_folder_with_contents(folder_path):
26
+ try:
27
+ shutil.rmtree(folder_path)
28
+ print(f"Successfully removed {folder_path} and all of its contents.")
29
+ except Exception as e:
30
+ print(f"Error removing {folder_path}: {e}")
31
+
32
+
33
+
34
+
35
+ def wipe_folder(folder_path):
36
+ # Check if the folder exists
37
+ if not os.path.exists(folder_path):
38
+ print(f"The folder {folder_path} does not exist.")
39
+ return
40
+
41
+ # Iterate over all the items in the given folder
42
+ for item in os.listdir(folder_path):
43
+ item_path = os.path.join(folder_path, item)
44
+ # If it's a file, remove it and print a message
45
+ if os.path.isfile(item_path):
46
+ os.remove(item_path)
47
+ print(f"Removed file: {item_path}")
48
+ # If it's a directory, remove it recursively and print a message
49
+ elif os.path.isdir(item_path):
50
+ shutil.rmtree(item_path)
51
+ print(f"Removed directory and its contents: {item_path}")
52
+
53
+ print(f"All contents wiped from {folder_path}.")
54
+
55
+
56
+ # Example usage
57
+ # folder_to_wipe = 'path_to_your_folder'
58
+ # wipe_folder(folder_to_wipe)
59
+
60
+
61
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
62
+ # Function to sort chapters based on their numeric order
63
+ def sort_key(chapter_file):
64
+ numbers = re.findall(r'\d+', chapter_file)
65
+ return int(numbers[0]) if numbers else 0
66
+
67
+ # Extract metadata and cover image from the eBook file
68
+ def extract_metadata_and_cover(ebook_path):
69
+ try:
70
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
71
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
72
+ if os.path.exists(cover_path):
73
+ return cover_path
74
+ except Exception as e:
75
+ print(f"Error extracting eBook metadata or cover: {e}")
76
+ return None
77
+ # Combine WAV files into a single file
78
+ def combine_wav_files(chapter_files, output_path):
79
+ # Initialize an empty audio segment
80
+ combined_audio = AudioSegment.empty()
81
+
82
+ # Sequentially append each file to the combined_audio
83
+ for chapter_file in chapter_files:
84
+ audio_segment = AudioSegment.from_wav(chapter_file)
85
+ combined_audio += audio_segment
86
+ # Export the combined audio to the output file path
87
+ combined_audio.export(output_path, format='wav')
88
+ print(f"Combined audio saved to {output_path}")
89
+
90
+ # Function to generate metadata for M4B chapters
91
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
92
+ with open(metadata_file, 'w') as file:
93
+ file.write(';FFMETADATA1\n')
94
+ start_time = 0
95
+ for index, chapter_file in enumerate(chapter_files):
96
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
97
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
98
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
99
+ start_time += duration_ms
100
+
101
+ # Generate the final M4B file using ffmpeg
102
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
103
+ # Ensure the output directory exists
104
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
105
+
106
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
107
+ if cover_image:
108
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
109
+ else:
110
+ ffmpeg_cmd += ['-map', '0:a']
111
+
112
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
113
+ if cover_image:
114
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
115
+ ffmpeg_cmd += [output_m4b]
116
+
117
+ subprocess.run(ffmpeg_cmd, check=True)
118
+
119
+
120
+
121
+ # Main logic
122
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
123
+ temp_dir = tempfile.gettempdir()
124
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
125
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
126
+ cover_image = extract_metadata_and_cover(ebook_file)
127
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
128
+
129
+ combine_wav_files(chapter_files, temp_combined_wav)
130
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
131
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
132
+
133
+ # Cleanup
134
+ if os.path.exists(temp_combined_wav):
135
+ os.remove(temp_combined_wav)
136
+ if os.path.exists(metadata_file):
137
+ os.remove(metadata_file)
138
+ if cover_image and os.path.exists(cover_image):
139
+ os.remove(cover_image)
140
+
141
+ # Example usage
142
+ # create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')
143
+
144
+
145
+
146
+
147
+
148
+
149
+ #this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
150
+ import os
151
+ import subprocess
152
+ import ebooklib
153
+ from ebooklib import epub
154
+ from bs4 import BeautifulSoup
155
+ import re
156
+ import csv
157
+ import nltk
158
+
159
+ # Only run the main script if Value is True
160
+ def create_chapter_labeled_book(ebook_file_path):
161
+ # Function to ensure the existence of a directory
162
+ def ensure_directory(directory_path):
163
+ if not os.path.exists(directory_path):
164
+ os.makedirs(directory_path)
165
+ print(f"Created directory: {directory_path}")
166
+
167
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
168
+
169
+ def convert_to_epub(input_path, output_path):
170
+ # Convert the ebook to EPUB format using Calibre's ebook-convert
171
+ try:
172
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
173
+ except subprocess.CalledProcessError as e:
174
+ print(f"An error occurred while converting the eBook: {e}")
175
+ return False
176
+ return True
177
+
178
+ def save_chapters_as_text(epub_path):
179
+ # Create the directory if it doesn't exist
180
+ directory = os.path.join(".", "Working_files", "temp_ebook")
181
+ ensure_directory(directory)
182
+
183
+ # Open the EPUB file
184
+ book = epub.read_epub(epub_path)
185
+
186
+ previous_chapter_text = ''
187
+ previous_filename = ''
188
+ chapter_counter = 0
189
+
190
+ # Iterate through the items in the EPUB file
191
+ for item in book.get_items():
192
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
193
+ # Use BeautifulSoup to parse HTML content
194
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
195
+ text = soup.get_text()
196
+
197
+ # Check if the text is not empty
198
+ if text.strip():
199
+ if len(text) < 2300 and previous_filename:
200
+ # Append text to the previous chapter if it's short
201
+ with open(previous_filename, 'a', encoding='utf-8') as file:
202
+ file.write('\n' + text)
203
+ else:
204
+ # Create a new chapter file and increment the counter
205
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
206
+ chapter_counter += 1
207
+ with open(previous_filename, 'w', encoding='utf-8') as file:
208
+ file.write(text)
209
+ print(f"Saved chapter: {previous_filename}")
210
+
211
+ # Example usage
212
+ input_ebook = ebook_file_path # Replace with your eBook file path
213
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
214
+
215
+
216
+ if os.path.exists(output_epub):
217
+ os.remove(output_epub)
218
+ print(f"File {output_epub} has been removed.")
219
+ else:
220
+ print(f"The file {output_epub} does not exist.")
221
+
222
+ if convert_to_epub(input_ebook, output_epub):
223
+ save_chapters_as_text(output_epub)
224
+
225
+ # Download the necessary NLTK data (if not already present)
226
+ nltk.download('punkt')
227
+
228
+ def process_chapter_files(folder_path, output_csv):
229
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
230
+ writer = csv.writer(csvfile)
231
+ # Write the header row
232
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
233
+
234
+ # Process each chapter file
235
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
236
+ for filename in chapter_files:
237
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
238
+ chapter_number = int(filename.split('_')[1].split('.')[0])
239
+ file_path = os.path.join(folder_path, filename)
240
+
241
+ try:
242
+ with open(file_path, 'r', encoding='utf-8') as file:
243
+ text = file.read()
244
+ # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
245
+ if text:
246
+ text = "NEWCHAPTERABC" + text
247
+ sentences = nltk.tokenize.sent_tokenize(text)
248
+ for sentence in sentences:
249
+ start_location = text.find(sentence)
250
+ end_location = start_location + len(sentence)
251
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
252
+ except Exception as e:
253
+ print(f"Error processing file {filename}: {e}")
254
+
255
+ # Example usage
256
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
257
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
258
+
259
+ process_chapter_files(folder_path, output_csv)
260
+
261
+ def sort_key(filename):
262
+ """Extract chapter number for sorting."""
263
+ match = re.search(r'chapter_(\d+)\.txt', filename)
264
+ return int(match.group(1)) if match else 0
265
+
266
+ def combine_chapters(input_folder, output_file):
267
+ # Create the output folder if it doesn't exist
268
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
269
+
270
+ # List all txt files and sort them by chapter number
271
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
272
+ sorted_files = sorted(files, key=sort_key)
273
+
274
+ with open(output_file, 'w', encoding='utf-8') as outfile: # Specify UTF-8 encoding here
275
+ for i, filename in enumerate(sorted_files):
276
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile: # And here
277
+ outfile.write(infile.read())
278
+ # Add the marker unless it's the last file
279
+ if i < len(sorted_files) - 1:
280
+ outfile.write("\nNEWCHAPTERABC\n")
281
+
282
+ # Paths
283
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
284
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
285
+
286
+
287
+ # Combine the chapters
288
+ combine_chapters(input_folder, output_file)
289
+
290
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
291
+
292
+
293
+ #create_chapter_labeled_book()
294
+
295
+
296
+
297
+
298
+ import os
299
+ import subprocess
300
+ import sys
301
+ import torchaudio
302
+
303
+ # Check if Calibre's ebook-convert tool is installed
304
+ def calibre_installed():
305
+ try:
306
+ subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
307
+ return True
308
+ except FileNotFoundError:
309
+ print("Calibre is not installed. Please install Calibre for this functionality.")
310
+ return False
311
+
312
+
313
+ import os
314
+ import torch
315
+ from TTS.api import TTS
316
+ from nltk.tokenize import sent_tokenize
317
+ from pydub import AudioSegment
318
+ # Assuming split_long_sentence and wipe_folder are defined elsewhere in your code
319
+
320
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
321
+ default_language_code = "en"
322
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
323
+
324
+ def combine_wav_files(input_directory, output_directory, file_name):
325
+ # Ensure that the output directory exists, create it if necessary
326
+ os.makedirs(output_directory, exist_ok=True)
327
+
328
+ # Specify the output file path
329
+ output_file_path = os.path.join(output_directory, file_name)
330
+
331
+ # Initialize an empty audio segment
332
+ combined_audio = AudioSegment.empty()
333
+
334
+ # Get a list of all .wav files in the specified input directory and sort them
335
+ input_file_paths = sorted(
336
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
337
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
338
+ )
339
+
340
+ # Sequentially append each file to the combined_audio
341
+ for input_file_path in input_file_paths:
342
+ audio_segment = AudioSegment.from_wav(input_file_path)
343
+ combined_audio += audio_segment
344
+
345
+ # Export the combined audio to the output file path
346
+ combined_audio.export(output_file_path, format='wav')
347
+
348
+ print(f"Combined audio saved to {output_file_path}")
349
+
350
+ # Function to split long strings into parts
351
+ def split_long_sentence(sentence, max_length=249, max_pauses=10):
352
+ """
353
+ Splits a sentence into parts based on length or number of pauses without recursion.
354
+
355
+ :param sentence: The sentence to split.
356
+ :param max_length: Maximum allowed length of a sentence.
357
+ :param max_pauses: Maximum allowed number of pauses in a sentence.
358
+ :return: A list of sentence parts that meet the criteria.
359
+ """
360
+ parts = []
361
+ while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
362
+ possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
363
+ if possible_splits:
364
+ # Find the best place to split the sentence, preferring the last possible split to keep parts longer
365
+ split_at = possible_splits[-1] + 1
366
+ else:
367
+ # If no punctuation to split on within max_length, split at max_length
368
+ split_at = max_length
369
+
370
+ # Split the sentence and add the first part to the list
371
+ parts.append(sentence[:split_at].strip())
372
+ sentence = sentence[split_at:].strip()
373
+
374
+ # Add the remaining part of the sentence
375
+ parts.append(sentence)
376
+ return parts
377
+
378
+ """
379
+ if 'tts' not in locals():
380
+ tts = TTS(selected_tts_model, progress_bar=True).to(device)
381
+ """
382
+ from tqdm import tqdm
383
+
384
+ # Convert chapters to audio using XTTS
385
+ def convert_chapters_to_audio(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
386
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
387
+ tts = TTS(selected_tts_model, progress_bar=False).to(device) # Set progress_bar to False to avoid nested progress bars
388
+
389
+ if not os.path.exists(output_audio_dir):
390
+ os.makedirs(output_audio_dir)
391
+
392
+ for chapter_file in sorted(os.listdir(chapters_dir)):
393
+ if chapter_file.endswith('.txt'):
394
+ # Extract chapter number from the filename
395
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
396
+ if match:
397
+ chapter_num = int(match.group(1))
398
+ else:
399
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
400
+ continue
401
+
402
+ chapter_path = os.path.join(chapters_dir, chapter_file)
403
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
404
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
405
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
406
+ os.makedirs(temp_audio_directory, exist_ok=True)
407
+ temp_count = 0
408
+
409
+ with open(chapter_path, 'r', encoding='utf-8') as file:
410
+ chapter_text = file.read()
411
+ # Use the specified language model for sentence tokenization
412
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
413
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
414
+ fragments = []
415
+ if language == "en":
416
+ fragments = split_long_sentence(sentence, max_length=249, max_pauses=10)
417
+ if language == "it":
418
+ fragments = split_long_sentence(sentence, max_length=213, max_pauses=10)
419
+ for fragment in fragments:
420
+ if fragment != "": #a hot fix to avoid blank fragments
421
+ print(f"Generating fragment: {fragment}...")
422
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
423
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
424
+ language_code = language if language else default_language_code
425
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
426
+ temp_count += 1
427
+
428
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
429
+ wipe_folder(temp_audio_directory)
430
+ print(f"Converted chapter {chapter_num} to audio.")
431
+
432
+
433
+
434
+ # Main execution flow
435
+ if __name__ == "__main__":
436
+ if len(sys.argv) < 2:
437
+ print("Usage: python script.py <ebook_file_path> [target_voice_file_path]")
438
+ sys.exit(1)
439
+
440
+ ebook_file_path = sys.argv[1]
441
+ target_voice = sys.argv[2] if len(sys.argv) > 2 else None
442
+ language = sys.argv[3] if len(sys.argv) > 3 else None
443
+
444
+ if not calibre_installed():
445
+ sys.exit(1)
446
+
447
+ working_files = os.path.join(".","Working_files", "temp_ebook")
448
+ full_folder_working_files =os.path.join(".","Working_files")
449
+ chapters_directory = os.path.join(".","Working_files", "temp_ebook")
450
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
451
+
452
+ print("Wiping and removeing Working_files folder...")
453
+ remove_folder_with_contents(full_folder_working_files)
454
+
455
+ print("Wiping and and removeing chapter_wav_files folder...")
456
+ remove_folder_with_contents(output_audio_directory)
457
+
458
+ create_chapter_labeled_book(ebook_file_path)
459
+ # audiobook_output_path = os.path.join(".", "Audiobooks")
460
+ # print(f"{chapters_directory}||||{output_audio_directory}|||||{target_voice}")
461
+ # convert_chapters_to_audio(chapters_directory, output_audio_directory, target_voice, language)
462
+ # create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
legacy/v1.0/Notebooks/Kaggel Archive Code/p2a_worker_gpu1.py ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+
3
+ #import os
4
+ #import shutil
5
+ #import subprocess
6
+ import re
7
+ #from pydub import AudioSegment
8
+ #import tempfile
9
+ #from pydub import AudioSegment
10
+ #import os
11
+ import nltk
12
+ #from nltk.tokenize import sent_tokenize
13
+ nltk.download('punkt') # Make sure to download the necessary models
14
+ def is_folder_empty(folder_path):
15
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
16
+ # List directory contents
17
+ if not os.listdir(folder_path):
18
+ return True # The folder is empty
19
+ else:
20
+ return False # The folder is not empty
21
+ else:
22
+ print(f"The path {folder_path} is not a valid folder.")
23
+ return None # The path is not a valid folder
24
+
25
+ def remove_folder_with_contents(folder_path):
26
+ try:
27
+ shutil.rmtree(folder_path)
28
+ print(f"Successfully removed {folder_path} and all of its contents.")
29
+ except Exception as e:
30
+ print(f"Error removing {folder_path}: {e}")
31
+
32
+
33
+
34
+
35
+ def wipe_folder(folder_path):
36
+ # Check if the folder exists
37
+ if not os.path.exists(folder_path):
38
+ print(f"The folder {folder_path} does not exist.")
39
+ return
40
+
41
+ # Iterate over all the items in the given folder
42
+ for item in os.listdir(folder_path):
43
+ item_path = os.path.join(folder_path, item)
44
+ # If it's a file, remove it and print a message
45
+ if os.path.isfile(item_path):
46
+ os.remove(item_path)
47
+ print(f"Removed file: {item_path}")
48
+ # If it's a directory, remove it recursively and print a message
49
+ elif os.path.isdir(item_path):
50
+ shutil.rmtree(item_path)
51
+ print(f"Removed directory and its contents: {item_path}")
52
+
53
+ print(f"All contents wiped from {folder_path}.")
54
+
55
+
56
+ # Example usage
57
+ # folder_to_wipe = 'path_to_your_folder'
58
+ # wipe_folder(folder_to_wipe)
59
+
60
+
61
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
62
+ # Function to sort chapters based on their numeric order
63
+ def sort_key(chapter_file):
64
+ numbers = re.findall(r'\d+', chapter_file)
65
+ return int(numbers[0]) if numbers else 0
66
+
67
+ # Extract metadata and cover image from the eBook file
68
+ def extract_metadata_and_cover(ebook_path):
69
+ try:
70
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
71
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
72
+ if os.path.exists(cover_path):
73
+ return cover_path
74
+ except Exception as e:
75
+ print(f"Error extracting eBook metadata or cover: {e}")
76
+ return None
77
+ # Combine WAV files into a single file
78
+ def combine_wav_files(chapter_files, output_path):
79
+ # Initialize an empty audio segment
80
+ combined_audio = AudioSegment.empty()
81
+
82
+ # Sequentially append each file to the combined_audio
83
+ for chapter_file in chapter_files:
84
+ audio_segment = AudioSegment.from_wav(chapter_file)
85
+ combined_audio += audio_segment
86
+ # Export the combined audio to the output file path
87
+ combined_audio.export(output_path, format='wav')
88
+ print(f"Combined audio saved to {output_path}")
89
+
90
+ # Function to generate metadata for M4B chapters
91
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
92
+ with open(metadata_file, 'w') as file:
93
+ file.write(';FFMETADATA1\n')
94
+ start_time = 0
95
+ for index, chapter_file in enumerate(chapter_files):
96
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
97
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
98
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
99
+ start_time += duration_ms
100
+
101
+ # Generate the final M4B file using ffmpeg
102
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
103
+ # Ensure the output directory exists
104
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
105
+
106
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
107
+ if cover_image:
108
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
109
+ else:
110
+ ffmpeg_cmd += ['-map', '0:a']
111
+
112
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
113
+ if cover_image:
114
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
115
+ ffmpeg_cmd += [output_m4b]
116
+
117
+ subprocess.run(ffmpeg_cmd, check=True)
118
+
119
+
120
+
121
+ # Main logic
122
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
123
+ temp_dir = tempfile.gettempdir()
124
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
125
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
126
+ cover_image = extract_metadata_and_cover(ebook_file)
127
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
128
+
129
+ combine_wav_files(chapter_files, temp_combined_wav)
130
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
131
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
132
+
133
+ # Cleanup
134
+ if os.path.exists(temp_combined_wav):
135
+ os.remove(temp_combined_wav)
136
+ if os.path.exists(metadata_file):
137
+ os.remove(metadata_file)
138
+ if cover_image and os.path.exists(cover_image):
139
+ os.remove(cover_image)
140
+
141
+ # Example usage
142
+ # create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')
143
+
144
+
145
+
146
+
147
+
148
+
149
+ #this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
150
+ #import os
151
+ #import subprocess
152
+ #import ebooklib
153
+ #from ebooklib import epub
154
+ #from bs4 import BeautifulSoup
155
+ #import re
156
+ #import csv
157
+ #import nltk
158
+
159
+ # Only run the main script if Value is True
160
+ def create_chapter_labeled_book(ebook_file_path):
161
+ # Function to ensure the existence of a directory
162
+ def ensure_directory(directory_path):
163
+ if not os.path.exists(directory_path):
164
+ os.makedirs(directory_path)
165
+ print(f"Created directory: {directory_path}")
166
+
167
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
168
+
169
+ def convert_to_epub(input_path, output_path):
170
+ # Convert the ebook to EPUB format using Calibre's ebook-convert
171
+ try:
172
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
173
+ except subprocess.CalledProcessError as e:
174
+ print(f"An error occurred while converting the eBook: {e}")
175
+ return False
176
+ return True
177
+
178
+ def save_chapters_as_text(epub_path):
179
+ # Create the directory if it doesn't exist
180
+ directory = os.path.join(".", "Working_files", "temp_ebook")
181
+ ensure_directory(directory)
182
+
183
+ # Open the EPUB file
184
+ book = epub.read_epub(epub_path)
185
+
186
+ previous_chapter_text = ''
187
+ previous_filename = ''
188
+ chapter_counter = 0
189
+
190
+ # Iterate through the items in the EPUB file
191
+ for item in book.get_items():
192
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
193
+ # Use BeautifulSoup to parse HTML content
194
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
195
+ text = soup.get_text()
196
+
197
+ # Check if the text is not empty
198
+ if text.strip():
199
+ if len(text) < 2300 and previous_filename:
200
+ # Append text to the previous chapter if it's short
201
+ with open(previous_filename, 'a', encoding='utf-8') as file:
202
+ file.write('\n' + text)
203
+ else:
204
+ # Create a new chapter file and increment the counter
205
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
206
+ chapter_counter += 1
207
+ with open(previous_filename, 'w', encoding='utf-8') as file:
208
+ file.write(text)
209
+ print(f"Saved chapter: {previous_filename}")
210
+
211
+ # Example usage
212
+ input_ebook = ebook_file_path # Replace with your eBook file path
213
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
214
+
215
+
216
+ if os.path.exists(output_epub):
217
+ os.remove(output_epub)
218
+ print(f"File {output_epub} has been removed.")
219
+ else:
220
+ print(f"The file {output_epub} does not exist.")
221
+
222
+ if convert_to_epub(input_ebook, output_epub):
223
+ save_chapters_as_text(output_epub)
224
+
225
+ # Download the necessary NLTK data (if not already present)
226
+ nltk.download('punkt')
227
+
228
+ def process_chapter_files(folder_path, output_csv):
229
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
230
+ writer = csv.writer(csvfile)
231
+ # Write the header row
232
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
233
+
234
+ # Process each chapter file
235
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
236
+ for filename in chapter_files:
237
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
238
+ chapter_number = int(filename.split('_')[1].split('.')[0])
239
+ file_path = os.path.join(folder_path, filename)
240
+
241
+ try:
242
+ with open(file_path, 'r', encoding='utf-8') as file:
243
+ text = file.read()
244
+ # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
245
+ if text:
246
+ text = "NEWCHAPTERABC" + text
247
+ sentences = nltk.tokenize.sent_tokenize(text)
248
+ for sentence in sentences:
249
+ start_location = text.find(sentence)
250
+ end_location = start_location + len(sentence)
251
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
252
+ except Exception as e:
253
+ print(f"Error processing file {filename}: {e}")
254
+
255
+ # Example usage
256
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
257
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
258
+
259
+ process_chapter_files(folder_path, output_csv)
260
+
261
+ def sort_key(filename):
262
+ """Extract chapter number for sorting."""
263
+ match = re.search(r'chapter_(\d+)\.txt', filename)
264
+ return int(match.group(1)) if match else 0
265
+
266
+ def combine_chapters(input_folder, output_file):
267
+ # Create the output folder if it doesn't exist
268
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
269
+
270
+ # List all txt files and sort them by chapter number
271
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
272
+ sorted_files = sorted(files, key=sort_key)
273
+
274
+ with open(output_file, 'w', encoding='utf-8') as outfile: # Specify UTF-8 encoding here
275
+ for i, filename in enumerate(sorted_files):
276
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile: # And here
277
+ outfile.write(infile.read())
278
+ # Add the marker unless it's the last file
279
+ if i < len(sorted_files) - 1:
280
+ outfile.write("\nNEWCHAPTERABC\n")
281
+
282
+ # Paths
283
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
284
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
285
+
286
+
287
+ # Combine the chapters
288
+ combine_chapters(input_folder, output_file)
289
+
290
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
291
+
292
+
293
+ #create_chapter_labeled_book()
294
+
295
+
296
+
297
+
298
+ #import os
299
+ import subprocess
300
+ import sys
301
+ import torchaudio # not sure if this is needed
302
+
303
+ # Check if Calibre's ebook-convert tool is installed
304
+ def calibre_installed():
305
+ try:
306
+ subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
307
+ return True
308
+ except FileNotFoundError:
309
+ print("Calibre is not installed. Please install Calibre for this functionality.")
310
+ return False
311
+
312
+
313
+ import os
314
+ import torch
315
+ from TTS.api import TTS
316
+ from nltk.tokenize import sent_tokenize
317
+ from pydub import AudioSegment
318
+ # Assuming split_long_sentence and wipe_folder are defined elsewhere in your code
319
+
320
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
321
+ default_language_code = "en"
322
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
323
+
324
+ def combine_wav_files(input_directory, output_directory, file_name):
325
+ # Ensure that the output directory exists, create it if necessary
326
+ os.makedirs(output_directory, exist_ok=True)
327
+
328
+ # Specify the output file path
329
+ output_file_path = os.path.join(output_directory, file_name)
330
+
331
+ # Initialize an empty audio segment
332
+ combined_audio = AudioSegment.empty()
333
+
334
+ # Get a list of all .wav files in the specified input directory and sort them
335
+ input_file_paths = sorted(
336
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
337
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
338
+ )
339
+
340
+ # Sequentially append each file to the combined_audio
341
+ for input_file_path in input_file_paths:
342
+ audio_segment = AudioSegment.from_wav(input_file_path)
343
+ combined_audio += audio_segment
344
+
345
+ # Export the combined audio to the output file path
346
+ combined_audio.export(output_file_path, format='wav')
347
+
348
+ print(f"Combined audio saved to {output_file_path}")
349
+
350
+ # Function to split long strings into parts
351
+ def split_long_sentence(sentence, max_length=249, max_pauses=10):
352
+ """
353
+ Splits a sentence into parts based on length or number of pauses without recursion.
354
+
355
+ :param sentence: The sentence to split.
356
+ :param max_length: Maximum allowed length of a sentence.
357
+ :param max_pauses: Maximum allowed number of pauses in a sentence.
358
+ :return: A list of sentence parts that meet the criteria.
359
+ """
360
+ parts = []
361
+ while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
362
+ possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
363
+ if possible_splits:
364
+ # Find the best place to split the sentence, preferring the last possible split to keep parts longer
365
+ split_at = possible_splits[-1] + 1
366
+ else:
367
+ # If no punctuation to split on within max_length, split at max_length
368
+ split_at = max_length
369
+
370
+ # Split the sentence and add the first part to the list
371
+ parts.append(sentence[:split_at].strip())
372
+ sentence = sentence[split_at:].strip()
373
+
374
+ # Add the remaining part of the sentence
375
+ parts.append(sentence)
376
+ return parts
377
+
378
+ """
379
+ if 'tts' not in locals():
380
+ tts = TTS(selected_tts_model, progress_bar=True).to(device)
381
+ """
382
+ from tqdm import tqdm
383
+
384
+ # Convert chapters to audio using XTTS
385
+ def convert_chapters_to_audio(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
386
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
387
+ tts = TTS(selected_tts_model, progress_bar=False).to(device) # Set progress_bar to False to avoid nested progress bars
388
+
389
+ if not os.path.exists(output_audio_dir):
390
+ os.makedirs(output_audio_dir)
391
+
392
+ for chapter_file in sorted(os.listdir(chapters_dir)):
393
+ if chapter_file.endswith('.txt'):
394
+ # Extract chapter number from the filename
395
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
396
+ if match:
397
+ chapter_num = int(match.group(1))
398
+ else:
399
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
400
+ continue
401
+
402
+ chapter_path = os.path.join(chapters_dir, chapter_file)
403
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
404
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
405
+ # temp_audio_directory = os.path.join(".", "Working_files", "temp")
406
+ temp_audio_directory = os.path.join(".", "Operator",worker_num, "temp")
407
+ os.makedirs(temp_audio_directory, exist_ok=True)
408
+ temp_count = 0
409
+
410
+ with open(chapter_path, 'r', encoding='utf-8') as file:
411
+ chapter_text = file.read()
412
+ # Use the specified language model for sentence tokenization
413
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
414
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
415
+ fragments = []
416
+ if language == "en":
417
+ fragments = split_long_sentence(sentence, max_length=249, max_pauses=10)
418
+ if language == "it":
419
+ fragments = split_long_sentence(sentence, max_length=213, max_pauses=10)
420
+ for fragment in fragments:
421
+ if fragment != "": #a hot fix to avoid blank fragments
422
+ print(f"Generating fragment: {fragment}...")
423
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
424
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
425
+ language_code = language if language else default_language_code
426
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
427
+ temp_count += 1
428
+
429
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
430
+ wipe_folder(temp_audio_directory)
431
+ print(f"Converted chapter {chapter_num} to audio.")
432
+
433
+
434
+
435
+ # Main execution flow
436
+ if __name__ == "__main__":
437
+ # if len(sys.argv) < 2:
438
+ # print("Usage: python script.py <ebook_file_path> [target_voice_file_path]")
439
+ # sys.exit(1)
440
+
441
+ worker_num = sys.argv[1] #to let the script know which temp dir its using in operator
442
+ # ebook_file_path = sys.argv[1]
443
+ target_voice = "./4.wav" # sys.argv[2] if len(sys.argv) > 2 else None
444
+ language = "en" # sys.argv[3] if len(sys.argv) > 3 else None
445
+
446
+ # if not calibre_installed():
447
+ # sys.exit(1)
448
+
449
+ working_files = os.path.join(".","Working_files", "temp_ebook")
450
+ full_folder_working_files =os.path.join(".","Working_files")
451
+ # chapters_directory = os.path.join(".","Working_files", "temp_ebook")
452
+ chapters_directory = os.path.join(".","Operator",worker_num, "temp_ebook")
453
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
454
+
455
+ # print("Wiping and removeing Working_files folder...")
456
+ # remove_folder_with_contents(full_folder_working_files)
457
+ #
458
+ # print("Wiping and and removeing chapter_wav_files folder...")
459
+ # remove_folder_with_contents(output_audio_directory)
460
+
461
+ # create_chapter_labeled_book(ebook_file_path)
462
+ audiobook_output_path = os.path.join(".", "Audiobooks")
463
+ print(f"{chapters_directory}||||{output_audio_directory}|||||{target_voice}")
464
+ convert_chapters_to_audio(chapters_directory, output_audio_directory, target_voice, language)
465
+ # create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
legacy/v1.0/Notebooks/Kaggel Archive Code/p2a_worker_gpu2.py ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+
3
+ #import os
4
+ #import shutil
5
+ #import subprocess
6
+ import re
7
+ #from pydub import AudioSegment
8
+ #import tempfile
9
+ #from pydub import AudioSegment
10
+ #import os
11
+ import nltk
12
+ #from nltk.tokenize import sent_tokenize
13
+ nltk.download('punkt') # Make sure to download the necessary models
14
+ def is_folder_empty(folder_path):
15
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
16
+ # List directory contents
17
+ if not os.listdir(folder_path):
18
+ return True # The folder is empty
19
+ else:
20
+ return False # The folder is not empty
21
+ else:
22
+ print(f"The path {folder_path} is not a valid folder.")
23
+ return None # The path is not a valid folder
24
+
25
+ def remove_folder_with_contents(folder_path):
26
+ try:
27
+ shutil.rmtree(folder_path)
28
+ print(f"Successfully removed {folder_path} and all of its contents.")
29
+ except Exception as e:
30
+ print(f"Error removing {folder_path}: {e}")
31
+
32
+
33
+
34
+
35
+ def wipe_folder(folder_path):
36
+ # Check if the folder exists
37
+ if not os.path.exists(folder_path):
38
+ print(f"The folder {folder_path} does not exist.")
39
+ return
40
+
41
+ # Iterate over all the items in the given folder
42
+ for item in os.listdir(folder_path):
43
+ item_path = os.path.join(folder_path, item)
44
+ # If it's a file, remove it and print a message
45
+ if os.path.isfile(item_path):
46
+ os.remove(item_path)
47
+ print(f"Removed file: {item_path}")
48
+ # If it's a directory, remove it recursively and print a message
49
+ elif os.path.isdir(item_path):
50
+ shutil.rmtree(item_path)
51
+ print(f"Removed directory and its contents: {item_path}")
52
+
53
+ print(f"All contents wiped from {folder_path}.")
54
+
55
+
56
+ # Example usage
57
+ # folder_to_wipe = 'path_to_your_folder'
58
+ # wipe_folder(folder_to_wipe)
59
+
60
+
61
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
62
+ # Function to sort chapters based on their numeric order
63
+ def sort_key(chapter_file):
64
+ numbers = re.findall(r'\d+', chapter_file)
65
+ return int(numbers[0]) if numbers else 0
66
+
67
+ # Extract metadata and cover image from the eBook file
68
+ def extract_metadata_and_cover(ebook_path):
69
+ try:
70
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
71
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
72
+ if os.path.exists(cover_path):
73
+ return cover_path
74
+ except Exception as e:
75
+ print(f"Error extracting eBook metadata or cover: {e}")
76
+ return None
77
+ # Combine WAV files into a single file
78
+ def combine_wav_files(chapter_files, output_path):
79
+ # Initialize an empty audio segment
80
+ combined_audio = AudioSegment.empty()
81
+
82
+ # Sequentially append each file to the combined_audio
83
+ for chapter_file in chapter_files:
84
+ audio_segment = AudioSegment.from_wav(chapter_file)
85
+ combined_audio += audio_segment
86
+ # Export the combined audio to the output file path
87
+ combined_audio.export(output_path, format='wav')
88
+ print(f"Combined audio saved to {output_path}")
89
+
90
+ # Function to generate metadata for M4B chapters
91
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
92
+ with open(metadata_file, 'w') as file:
93
+ file.write(';FFMETADATA1\n')
94
+ start_time = 0
95
+ for index, chapter_file in enumerate(chapter_files):
96
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
97
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
98
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
99
+ start_time += duration_ms
100
+
101
+ # Generate the final M4B file using ffmpeg
102
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
103
+ # Ensure the output directory exists
104
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
105
+
106
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
107
+ if cover_image:
108
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
109
+ else:
110
+ ffmpeg_cmd += ['-map', '0:a']
111
+
112
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
113
+ if cover_image:
114
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
115
+ ffmpeg_cmd += [output_m4b]
116
+
117
+ subprocess.run(ffmpeg_cmd, check=True)
118
+
119
+
120
+
121
+ # Main logic
122
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
123
+ temp_dir = tempfile.gettempdir()
124
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
125
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
126
+ cover_image = extract_metadata_and_cover(ebook_file)
127
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
128
+
129
+ combine_wav_files(chapter_files, temp_combined_wav)
130
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
131
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
132
+
133
+ # Cleanup
134
+ if os.path.exists(temp_combined_wav):
135
+ os.remove(temp_combined_wav)
136
+ if os.path.exists(metadata_file):
137
+ os.remove(metadata_file)
138
+ if cover_image and os.path.exists(cover_image):
139
+ os.remove(cover_image)
140
+
141
+ # Example usage
142
+ # create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')
143
+
144
+
145
+
146
+
147
+
148
+
149
+ #this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
150
+ #import os
151
+ #import subprocess
152
+ #import ebooklib
153
+ #from ebooklib import epub
154
+ #from bs4 import BeautifulSoup
155
+ #import re
156
+ #import csv
157
+ #import nltk
158
+
159
+ # Only run the main script if Value is True
160
+ def create_chapter_labeled_book(ebook_file_path):
161
+ # Function to ensure the existence of a directory
162
+ def ensure_directory(directory_path):
163
+ if not os.path.exists(directory_path):
164
+ os.makedirs(directory_path)
165
+ print(f"Created directory: {directory_path}")
166
+
167
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
168
+
169
+ def convert_to_epub(input_path, output_path):
170
+ # Convert the ebook to EPUB format using Calibre's ebook-convert
171
+ try:
172
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
173
+ except subprocess.CalledProcessError as e:
174
+ print(f"An error occurred while converting the eBook: {e}")
175
+ return False
176
+ return True
177
+
178
+ def save_chapters_as_text(epub_path):
179
+ # Create the directory if it doesn't exist
180
+ directory = os.path.join(".", "Working_files", "temp_ebook")
181
+ ensure_directory(directory)
182
+
183
+ # Open the EPUB file
184
+ book = epub.read_epub(epub_path)
185
+
186
+ previous_chapter_text = ''
187
+ previous_filename = ''
188
+ chapter_counter = 0
189
+
190
+ # Iterate through the items in the EPUB file
191
+ for item in book.get_items():
192
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
193
+ # Use BeautifulSoup to parse HTML content
194
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
195
+ text = soup.get_text()
196
+
197
+ # Check if the text is not empty
198
+ if text.strip():
199
+ if len(text) < 2300 and previous_filename:
200
+ # Append text to the previous chapter if it's short
201
+ with open(previous_filename, 'a', encoding='utf-8') as file:
202
+ file.write('\n' + text)
203
+ else:
204
+ # Create a new chapter file and increment the counter
205
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
206
+ chapter_counter += 1
207
+ with open(previous_filename, 'w', encoding='utf-8') as file:
208
+ file.write(text)
209
+ print(f"Saved chapter: {previous_filename}")
210
+
211
+ # Example usage
212
+ input_ebook = ebook_file_path # Replace with your eBook file path
213
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
214
+
215
+
216
+ if os.path.exists(output_epub):
217
+ os.remove(output_epub)
218
+ print(f"File {output_epub} has been removed.")
219
+ else:
220
+ print(f"The file {output_epub} does not exist.")
221
+
222
+ if convert_to_epub(input_ebook, output_epub):
223
+ save_chapters_as_text(output_epub)
224
+
225
+ # Download the necessary NLTK data (if not already present)
226
+ nltk.download('punkt')
227
+
228
+ def process_chapter_files(folder_path, output_csv):
229
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
230
+ writer = csv.writer(csvfile)
231
+ # Write the header row
232
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
233
+
234
+ # Process each chapter file
235
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
236
+ for filename in chapter_files:
237
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
238
+ chapter_number = int(filename.split('_')[1].split('.')[0])
239
+ file_path = os.path.join(folder_path, filename)
240
+
241
+ try:
242
+ with open(file_path, 'r', encoding='utf-8') as file:
243
+ text = file.read()
244
+ # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
245
+ if text:
246
+ text = "NEWCHAPTERABC" + text
247
+ sentences = nltk.tokenize.sent_tokenize(text)
248
+ for sentence in sentences:
249
+ start_location = text.find(sentence)
250
+ end_location = start_location + len(sentence)
251
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
252
+ except Exception as e:
253
+ print(f"Error processing file {filename}: {e}")
254
+
255
+ # Example usage
256
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
257
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
258
+
259
+ process_chapter_files(folder_path, output_csv)
260
+
261
+ def sort_key(filename):
262
+ """Extract chapter number for sorting."""
263
+ match = re.search(r'chapter_(\d+)\.txt', filename)
264
+ return int(match.group(1)) if match else 0
265
+
266
+ def combine_chapters(input_folder, output_file):
267
+ # Create the output folder if it doesn't exist
268
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
269
+
270
+ # List all txt files and sort them by chapter number
271
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
272
+ sorted_files = sorted(files, key=sort_key)
273
+
274
+ with open(output_file, 'w', encoding='utf-8') as outfile: # Specify UTF-8 encoding here
275
+ for i, filename in enumerate(sorted_files):
276
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile: # And here
277
+ outfile.write(infile.read())
278
+ # Add the marker unless it's the last file
279
+ if i < len(sorted_files) - 1:
280
+ outfile.write("\nNEWCHAPTERABC\n")
281
+
282
+ # Paths
283
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
284
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
285
+
286
+
287
+ # Combine the chapters
288
+ combine_chapters(input_folder, output_file)
289
+
290
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
291
+
292
+
293
+ #create_chapter_labeled_book()
294
+
295
+
296
+
297
+
298
+ #import os
299
+ import subprocess
300
+ import sys
301
+ import torchaudio # not sure if this is needed
302
+
303
+ # Check if Calibre's ebook-convert tool is installed
304
+ def calibre_installed():
305
+ try:
306
+ subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
307
+ return True
308
+ except FileNotFoundError:
309
+ print("Calibre is not installed. Please install Calibre for this functionality.")
310
+ return False
311
+
312
+
313
+ import os
314
+ import torch
315
+ from TTS.api import TTS
316
+ from nltk.tokenize import sent_tokenize
317
+ from pydub import AudioSegment
318
+ # Assuming split_long_sentence and wipe_folder are defined elsewhere in your code
319
+
320
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
321
+ default_language_code = "en"
322
+ device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
323
+
324
+ def combine_wav_files(input_directory, output_directory, file_name):
325
+ # Ensure that the output directory exists, create it if necessary
326
+ os.makedirs(output_directory, exist_ok=True)
327
+
328
+ # Specify the output file path
329
+ output_file_path = os.path.join(output_directory, file_name)
330
+
331
+ # Initialize an empty audio segment
332
+ combined_audio = AudioSegment.empty()
333
+
334
+ # Get a list of all .wav files in the specified input directory and sort them
335
+ input_file_paths = sorted(
336
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
337
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
338
+ )
339
+
340
+ # Sequentially append each file to the combined_audio
341
+ for input_file_path in input_file_paths:
342
+ audio_segment = AudioSegment.from_wav(input_file_path)
343
+ combined_audio += audio_segment
344
+
345
+ # Export the combined audio to the output file path
346
+ combined_audio.export(output_file_path, format='wav')
347
+
348
+ print(f"Combined audio saved to {output_file_path}")
349
+
350
+ # Function to split long strings into parts
351
+ def split_long_sentence(sentence, max_length=249, max_pauses=10):
352
+ """
353
+ Splits a sentence into parts based on length or number of pauses without recursion.
354
+
355
+ :param sentence: The sentence to split.
356
+ :param max_length: Maximum allowed length of a sentence.
357
+ :param max_pauses: Maximum allowed number of pauses in a sentence.
358
+ :return: A list of sentence parts that meet the criteria.
359
+ """
360
+ parts = []
361
+ while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
362
+ possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
363
+ if possible_splits:
364
+ # Find the best place to split the sentence, preferring the last possible split to keep parts longer
365
+ split_at = possible_splits[-1] + 1
366
+ else:
367
+ # If no punctuation to split on within max_length, split at max_length
368
+ split_at = max_length
369
+
370
+ # Split the sentence and add the first part to the list
371
+ parts.append(sentence[:split_at].strip())
372
+ sentence = sentence[split_at:].strip()
373
+
374
+ # Add the remaining part of the sentence
375
+ parts.append(sentence)
376
+ return parts
377
+
378
+ """
379
+ if 'tts' not in locals():
380
+ tts = TTS(selected_tts_model, progress_bar=True).to(device)
381
+ """
382
+ from tqdm import tqdm
383
+
384
+ # Convert chapters to audio using XTTS
385
+ def convert_chapters_to_audio(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
386
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
387
+ tts = TTS(selected_tts_model, progress_bar=False).to(device) # Set progress_bar to False to avoid nested progress bars
388
+
389
+ if not os.path.exists(output_audio_dir):
390
+ os.makedirs(output_audio_dir)
391
+
392
+ for chapter_file in sorted(os.listdir(chapters_dir)):
393
+ if chapter_file.endswith('.txt'):
394
+ # Extract chapter number from the filename
395
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
396
+ if match:
397
+ chapter_num = int(match.group(1))
398
+ else:
399
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
400
+ continue
401
+
402
+ chapter_path = os.path.join(chapters_dir, chapter_file)
403
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
404
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
405
+ # temp_audio_directory = os.path.join(".", "Working_files", "temp")
406
+ temp_audio_directory = os.path.join(".", "Operator",worker_num, "temp")
407
+ os.makedirs(temp_audio_directory, exist_ok=True)
408
+ temp_count = 0
409
+
410
+ with open(chapter_path, 'r', encoding='utf-8') as file:
411
+ chapter_text = file.read()
412
+ # Use the specified language model for sentence tokenization
413
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
414
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
415
+ fragments = []
416
+ if language == "en":
417
+ fragments = split_long_sentence(sentence, max_length=249, max_pauses=10)
418
+ if language == "it":
419
+ fragments = split_long_sentence(sentence, max_length=213, max_pauses=10)
420
+ for fragment in fragments:
421
+ if fragment != "": #a hot fix to avoid blank fragments
422
+ print(f"Generating fragment: {fragment}...")
423
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
424
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
425
+ language_code = language if language else default_language_code
426
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
427
+ temp_count += 1
428
+
429
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
430
+ wipe_folder(temp_audio_directory)
431
+ print(f"Converted chapter {chapter_num} to audio.")
432
+
433
+
434
+
435
+ # Main execution flow
436
+ if __name__ == "__main__":
437
+ # if len(sys.argv) < 2:
438
+ # print("Usage: python script.py <ebook_file_path> [target_voice_file_path]")
439
+ # sys.exit(1)
440
+
441
+ worker_num = sys.argv[1] #to let the script know which temp dir its using in operator
442
+ # ebook_file_path = sys.argv[1]
443
+ target_voice = "./4.wav" # sys.argv[2] if len(sys.argv) > 2 else None
444
+ language = "en" # sys.argv[3] if len(sys.argv) > 3 else None
445
+
446
+ # if not calibre_installed():
447
+ # sys.exit(1)
448
+
449
+ working_files = os.path.join(".","Working_files", "temp_ebook")
450
+ full_folder_working_files =os.path.join(".","Working_files")
451
+ # chapters_directory = os.path.join(".","Working_files", "temp_ebook")
452
+ chapters_directory = os.path.join(".","Operator",worker_num, "temp_ebook")
453
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
454
+
455
+ # print("Wiping and removeing Working_files folder...")
456
+ # remove_folder_with_contents(full_folder_working_files)
457
+ #
458
+ # print("Wiping and and removeing chapter_wav_files folder...")
459
+ # remove_folder_with_contents(output_audio_directory)
460
+
461
+ # create_chapter_labeled_book(ebook_file_path)
462
+ audiobook_output_path = os.path.join(".", "Audiobooks")
463
+ print(f"{chapters_directory}||||{output_audio_directory}|||||{target_voice}")
464
+ convert_chapters_to_audio(chapters_directory, output_audio_directory, target_voice, language)
465
+ # create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
legacy/v1.0/Notebooks/Kaggel Archive Code/p3.py ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+
3
+ import os
4
+ import shutil
5
+ import subprocess
6
+ import re
7
+ from pydub import AudioSegment
8
+ import tempfile
9
+ from pydub import AudioSegment
10
+ import os
11
+ import nltk
12
+ from nltk.tokenize import sent_tokenize
13
+ nltk.download('punkt') # Make sure to download the necessary models
14
+ def is_folder_empty(folder_path):
15
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
16
+ # List directory contents
17
+ if not os.listdir(folder_path):
18
+ return True # The folder is empty
19
+ else:
20
+ return False # The folder is not empty
21
+ else:
22
+ print(f"The path {folder_path} is not a valid folder.")
23
+ return None # The path is not a valid folder
24
+
25
+ def remove_folder_with_contents(folder_path):
26
+ try:
27
+ shutil.rmtree(folder_path)
28
+ print(f"Successfully removed {folder_path} and all of its contents.")
29
+ except Exception as e:
30
+ print(f"Error removing {folder_path}: {e}")
31
+
32
+
33
+
34
+
35
+ def wipe_folder(folder_path):
36
+ # Check if the folder exists
37
+ if not os.path.exists(folder_path):
38
+ print(f"The folder {folder_path} does not exist.")
39
+ return
40
+
41
+ # Iterate over all the items in the given folder
42
+ for item in os.listdir(folder_path):
43
+ item_path = os.path.join(folder_path, item)
44
+ # If it's a file, remove it and print a message
45
+ if os.path.isfile(item_path):
46
+ os.remove(item_path)
47
+ print(f"Removed file: {item_path}")
48
+ # If it's a directory, remove it recursively and print a message
49
+ elif os.path.isdir(item_path):
50
+ shutil.rmtree(item_path)
51
+ print(f"Removed directory and its contents: {item_path}")
52
+
53
+ print(f"All contents wiped from {folder_path}.")
54
+
55
+
56
+ # Example usage
57
+ # folder_to_wipe = 'path_to_your_folder'
58
+ # wipe_folder(folder_to_wipe)
59
+
60
+
61
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
62
+ # Function to sort chapters based on their numeric order
63
+ def sort_key(chapter_file):
64
+ numbers = re.findall(r'\d+', chapter_file)
65
+ return int(numbers[0]) if numbers else 0
66
+
67
+ # Extract metadata and cover image from the eBook file
68
+ def extract_metadata_and_cover(ebook_path):
69
+ try:
70
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
71
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
72
+ if os.path.exists(cover_path):
73
+ return cover_path
74
+ except Exception as e:
75
+ print(f"Error extracting eBook metadata or cover: {e}")
76
+ return None
77
+ # Combine WAV files into a single file
78
+ def combine_wav_files(chapter_files, output_path):
79
+ # Initialize an empty audio segment
80
+ combined_audio = AudioSegment.empty()
81
+
82
+ # Sequentially append each file to the combined_audio
83
+ for chapter_file in chapter_files:
84
+ audio_segment = AudioSegment.from_wav(chapter_file)
85
+ combined_audio += audio_segment
86
+ # Export the combined audio to the output file path
87
+ combined_audio.export(output_path, format='wav')
88
+ print(f"Combined audio saved to {output_path}")
89
+
90
+ # Function to generate metadata for M4B chapters
91
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
92
+ with open(metadata_file, 'w') as file:
93
+ file.write(';FFMETADATA1\n')
94
+ start_time = 0
95
+ for index, chapter_file in enumerate(chapter_files):
96
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
97
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
98
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
99
+ start_time += duration_ms
100
+
101
+ # Generate the final M4B file using ffmpeg
102
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
103
+ # Ensure the output directory exists
104
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
105
+
106
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
107
+ if cover_image:
108
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
109
+ else:
110
+ ffmpeg_cmd += ['-map', '0:a']
111
+
112
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
113
+ if cover_image:
114
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
115
+ ffmpeg_cmd += [output_m4b]
116
+
117
+ subprocess.run(ffmpeg_cmd, check=True)
118
+
119
+
120
+
121
+ # Main logic
122
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
123
+ temp_dir = tempfile.gettempdir()
124
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
125
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
126
+ cover_image = extract_metadata_and_cover(ebook_file)
127
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
128
+
129
+ combine_wav_files(chapter_files, temp_combined_wav)
130
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
131
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
132
+
133
+ # Cleanup
134
+ if os.path.exists(temp_combined_wav):
135
+ os.remove(temp_combined_wav)
136
+ if os.path.exists(metadata_file):
137
+ os.remove(metadata_file)
138
+ if cover_image and os.path.exists(cover_image):
139
+ os.remove(cover_image)
140
+
141
+ # Example usage
142
+ # create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')
143
+
144
+
145
+
146
+
147
+
148
+
149
+ #this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
150
+ import os
151
+ import subprocess
152
+ import ebooklib
153
+ from ebooklib import epub
154
+ from bs4 import BeautifulSoup
155
+ import re
156
+ import csv
157
+ import nltk
158
+
159
+ # Only run the main script if Value is True
160
+ def create_chapter_labeled_book(ebook_file_path):
161
+ # Function to ensure the existence of a directory
162
+ def ensure_directory(directory_path):
163
+ if not os.path.exists(directory_path):
164
+ os.makedirs(directory_path)
165
+ print(f"Created directory: {directory_path}")
166
+
167
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
168
+
169
+ def convert_to_epub(input_path, output_path):
170
+ # Convert the ebook to EPUB format using Calibre's ebook-convert
171
+ try:
172
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
173
+ except subprocess.CalledProcessError as e:
174
+ print(f"An error occurred while converting the eBook: {e}")
175
+ return False
176
+ return True
177
+
178
+ def save_chapters_as_text(epub_path):
179
+ # Create the directory if it doesn't exist
180
+ directory = os.path.join(".", "Working_files", "temp_ebook")
181
+ ensure_directory(directory)
182
+
183
+ # Open the EPUB file
184
+ book = epub.read_epub(epub_path)
185
+
186
+ previous_chapter_text = ''
187
+ previous_filename = ''
188
+ chapter_counter = 0
189
+
190
+ # Iterate through the items in the EPUB file
191
+ for item in book.get_items():
192
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
193
+ # Use BeautifulSoup to parse HTML content
194
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
195
+ text = soup.get_text()
196
+
197
+ # Check if the text is not empty
198
+ if text.strip():
199
+ if len(text) < 2300 and previous_filename:
200
+ # Append text to the previous chapter if it's short
201
+ with open(previous_filename, 'a', encoding='utf-8') as file:
202
+ file.write('\n' + text)
203
+ else:
204
+ # Create a new chapter file and increment the counter
205
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
206
+ chapter_counter += 1
207
+ with open(previous_filename, 'w', encoding='utf-8') as file:
208
+ file.write(text)
209
+ print(f"Saved chapter: {previous_filename}")
210
+
211
+ # Example usage
212
+ input_ebook = ebook_file_path # Replace with your eBook file path
213
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
214
+
215
+
216
+ if os.path.exists(output_epub):
217
+ os.remove(output_epub)
218
+ print(f"File {output_epub} has been removed.")
219
+ else:
220
+ print(f"The file {output_epub} does not exist.")
221
+
222
+ if convert_to_epub(input_ebook, output_epub):
223
+ save_chapters_as_text(output_epub)
224
+
225
+ # Download the necessary NLTK data (if not already present)
226
+ nltk.download('punkt')
227
+
228
+ def process_chapter_files(folder_path, output_csv):
229
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
230
+ writer = csv.writer(csvfile)
231
+ # Write the header row
232
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
233
+
234
+ # Process each chapter file
235
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
236
+ for filename in chapter_files:
237
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
238
+ chapter_number = int(filename.split('_')[1].split('.')[0])
239
+ file_path = os.path.join(folder_path, filename)
240
+
241
+ try:
242
+ with open(file_path, 'r', encoding='utf-8') as file:
243
+ text = file.read()
244
+ # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
245
+ if text:
246
+ text = "NEWCHAPTERABC" + text
247
+ sentences = nltk.tokenize.sent_tokenize(text)
248
+ for sentence in sentences:
249
+ start_location = text.find(sentence)
250
+ end_location = start_location + len(sentence)
251
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
252
+ except Exception as e:
253
+ print(f"Error processing file {filename}: {e}")
254
+
255
+ # Example usage
256
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
257
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
258
+
259
+ process_chapter_files(folder_path, output_csv)
260
+
261
+ def sort_key(filename):
262
+ """Extract chapter number for sorting."""
263
+ match = re.search(r'chapter_(\d+)\.txt', filename)
264
+ return int(match.group(1)) if match else 0
265
+
266
+ def combine_chapters(input_folder, output_file):
267
+ # Create the output folder if it doesn't exist
268
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
269
+
270
+ # List all txt files and sort them by chapter number
271
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
272
+ sorted_files = sorted(files, key=sort_key)
273
+
274
+ with open(output_file, 'w', encoding='utf-8') as outfile: # Specify UTF-8 encoding here
275
+ for i, filename in enumerate(sorted_files):
276
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile: # And here
277
+ outfile.write(infile.read())
278
+ # Add the marker unless it's the last file
279
+ if i < len(sorted_files) - 1:
280
+ outfile.write("\nNEWCHAPTERABC\n")
281
+
282
+ # Paths
283
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
284
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
285
+
286
+
287
+ # Combine the chapters
288
+ combine_chapters(input_folder, output_file)
289
+
290
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
291
+
292
+
293
+ #create_chapter_labeled_book()
294
+
295
+
296
+
297
+
298
+ import os
299
+ import subprocess
300
+ import sys
301
+ import torchaudio
302
+
303
+ # Check if Calibre's ebook-convert tool is installed
304
+ def calibre_installed():
305
+ try:
306
+ subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
307
+ return True
308
+ except FileNotFoundError:
309
+ print("Calibre is not installed. Please install Calibre for this functionality.")
310
+ return False
311
+
312
+
313
+ import os
314
+ import torch
315
+ from TTS.api import TTS
316
+ from nltk.tokenize import sent_tokenize
317
+ from pydub import AudioSegment
318
+ # Assuming split_long_sentence and wipe_folder are defined elsewhere in your code
319
+
320
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
321
+ default_language_code = "en"
322
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
323
+
324
+ def combine_wav_files(input_directory, output_directory, file_name):
325
+ # Ensure that the output directory exists, create it if necessary
326
+ os.makedirs(output_directory, exist_ok=True)
327
+
328
+ # Specify the output file path
329
+ output_file_path = os.path.join(output_directory, file_name)
330
+
331
+ # Initialize an empty audio segment
332
+ combined_audio = AudioSegment.empty()
333
+
334
+ # Get a list of all .wav files in the specified input directory and sort them
335
+ input_file_paths = sorted(
336
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
337
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
338
+ )
339
+
340
+ # Sequentially append each file to the combined_audio
341
+ for input_file_path in input_file_paths:
342
+ audio_segment = AudioSegment.from_wav(input_file_path)
343
+ combined_audio += audio_segment
344
+
345
+ # Export the combined audio to the output file path
346
+ combined_audio.export(output_file_path, format='wav')
347
+
348
+ print(f"Combined audio saved to {output_file_path}")
349
+
350
+ # Function to split long strings into parts
351
+ def split_long_sentence(sentence, max_length=249, max_pauses=10):
352
+ """
353
+ Splits a sentence into parts based on length or number of pauses without recursion.
354
+
355
+ :param sentence: The sentence to split.
356
+ :param max_length: Maximum allowed length of a sentence.
357
+ :param max_pauses: Maximum allowed number of pauses in a sentence.
358
+ :return: A list of sentence parts that meet the criteria.
359
+ """
360
+ parts = []
361
+ while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
362
+ possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
363
+ if possible_splits:
364
+ # Find the best place to split the sentence, preferring the last possible split to keep parts longer
365
+ split_at = possible_splits[-1] + 1
366
+ else:
367
+ # If no punctuation to split on within max_length, split at max_length
368
+ split_at = max_length
369
+
370
+ # Split the sentence and add the first part to the list
371
+ parts.append(sentence[:split_at].strip())
372
+ sentence = sentence[split_at:].strip()
373
+
374
+ # Add the remaining part of the sentence
375
+ parts.append(sentence)
376
+ return parts
377
+
378
+ """
379
+ if 'tts' not in locals():
380
+ tts = TTS(selected_tts_model, progress_bar=True).to(device)
381
+ """
382
+ from tqdm import tqdm
383
+
384
+ # Convert chapters to audio using XTTS
385
+ def convert_chapters_to_audio(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
386
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
387
+ tts = TTS(selected_tts_model, progress_bar=False).to(device) # Set progress_bar to False to avoid nested progress bars
388
+
389
+ if not os.path.exists(output_audio_dir):
390
+ os.makedirs(output_audio_dir)
391
+
392
+ for chapter_file in sorted(os.listdir(chapters_dir)):
393
+ if chapter_file.endswith('.txt'):
394
+ # Extract chapter number from the filename
395
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
396
+ if match:
397
+ chapter_num = int(match.group(1))
398
+ else:
399
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
400
+ continue
401
+
402
+ chapter_path = os.path.join(chapters_dir, chapter_file)
403
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
404
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
405
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
406
+ os.makedirs(temp_audio_directory, exist_ok=True)
407
+ temp_count = 0
408
+
409
+ with open(chapter_path, 'r', encoding='utf-8') as file:
410
+ chapter_text = file.read()
411
+ # Use the specified language model for sentence tokenization
412
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
413
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
414
+ fragments = []
415
+ if language == "en":
416
+ fragments = split_long_sentence(sentence, max_length=249, max_pauses=10)
417
+ if language == "it":
418
+ fragments = split_long_sentence(sentence, max_length=213, max_pauses=10)
419
+ for fragment in fragments:
420
+ if fragment != "": #a hot fix to avoid blank fragments
421
+ print(f"Generating fragment: {fragment}...")
422
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
423
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
424
+ language_code = language if language else default_language_code
425
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
426
+ temp_count += 1
427
+
428
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
429
+ wipe_folder(temp_audio_directory)
430
+ print(f"Converted chapter {chapter_num} to audio.")
431
+
432
+
433
+
434
+ # Main execution flow
435
+ if __name__ == "__main__":
436
+ if len(sys.argv) < 2:
437
+ print("Usage: python script.py <ebook_file_path> [target_voice_file_path]")
438
+ sys.exit(1)
439
+
440
+ ebook_file_path = sys.argv[1]
441
+ target_voice = sys.argv[2] if len(sys.argv) > 2 else None
442
+ language = sys.argv[3] if len(sys.argv) > 3 else None
443
+
444
+ if not calibre_installed():
445
+ sys.exit(1)
446
+
447
+ working_files = os.path.join(".","Working_files", "temp_ebook")
448
+ full_folder_working_files =os.path.join(".","Working_files")
449
+ chapters_directory = os.path.join(".","Working_files", "temp_ebook")
450
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
451
+
452
+ # print("Wiping and removeing Working_files folder...")
453
+ # remove_folder_with_contents(full_folder_working_files)
454
+ #
455
+ # print("Wiping and and removeing chapter_wav_files folder...")
456
+ # remove_folder_with_contents(output_audio_directory)
457
+
458
+ # create_chapter_labeled_book(ebook_file_path)
459
+ audiobook_output_path = os.path.join(".", "Audiobooks")
460
+ # print(f"{chapters_directory}||||{output_audio_directory}|||||{target_voice}")
461
+ # convert_chapters_to_audio(chapters_directory, output_audio_directory, target_voice, language)
462
+ create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
legacy/v1.0/Notebooks/colab_ebook2audiobookxtts.ipynb ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4",
8
+ "include_colab_link": true
9
+ },
10
+ "kernelspec": {
11
+ "name": "python3",
12
+ "display_name": "Python 3"
13
+ },
14
+ "language_info": {
15
+ "name": "python"
16
+ },
17
+ "accelerator": "GPU"
18
+ },
19
+ "cells": [
20
+ {
21
+ "cell_type": "markdown",
22
+ "metadata": {
23
+ "id": "view-in-github",
24
+ "colab_type": "text"
25
+ },
26
+ "source": [
27
+ "<a href=\"https://colab.research.google.com/github/DrewThomasson/ebook2audiobookXTTS/blob/main/Notebooks/colab_ebook2audiobookxtts.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "source": [
33
+ "## Welcome to the ebook2audiobookxtts free google colab!\n",
34
+ "## 🌟 Features\n",
35
+ "\n",
36
+ "- 📖 Converts eBooks to text format with Calibre.\n",
37
+ "- 📚 Splits eBook into chapters for organized audio.\n",
38
+ "- 🎙️ High-quality text-to-speech with Coqui XTTS.\n",
39
+ "- 🗣️ Optional voice cloning with your own voice file.\n",
40
+ "- 🌍 Supports multiple languages! (English (en), Spanish (es), French (fr), German (de), Italian (it), Portuguese (pt), Polish (pl), Turkish (tr), Russian (ru), Dutch (nl), Czech (cs), Arabic (ar), Chinese (zh-cn), Japanese (ja), Hungarian (hu), Korean (ko)).\n",
41
+ "## Want to run locally for free? ⬇\n",
42
+ "## [Check out the ebook2audiobookxtts github!](https://github.com/DrewThomasson/ebook2audiobookXTTS)"
43
+ ],
44
+ "metadata": {
45
+ "id": "DKNNnwD-HJwQ"
46
+ }
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "source": [
51
+ "# @title 🛠️ Install requirments\n",
52
+ "#!DEBIAN_FRONTEND=noninteractive\n",
53
+ "!sudo apt-get update # && sudo apt-get -y upgrade\n",
54
+ "!sudo apt-get -y install libegl1\n",
55
+ "!sudo apt-get -y install libopengl0\n",
56
+ "!sudo apt-get -y install libxcb-cursor0\n",
57
+ "!sudo -v && wget -nv -O- https://download.calibre-ebook.com/linux-installer.sh | sudo sh /dev/stdin\n",
58
+ "!sudo apt-get install -y ffmpeg\n",
59
+ "#!sudo apt-get install -y calibre\n",
60
+ "!pip install ebook2audiobook-install-counter\n",
61
+ "!pip install ebooklib\n",
62
+ "!pip install pydub\n",
63
+ "!pip install nltk\n",
64
+ "!pip install beautifulsoup4\n",
65
+ "!pip install tqdm\n",
66
+ "!pip install gradio\n",
67
+ "!pip install coqui-tts"
68
+ ],
69
+ "metadata": {
70
+ "id": "Edxj355K0rUz",
71
+ "collapsed": true,
72
+ "cellView": "form"
73
+ },
74
+ "execution_count": null,
75
+ "outputs": []
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "source": [
80
+ "# @title 🚀 Run ebook2audiobookxtts! (Make sure to set the runtime to have gpu to have faster generation speeds! :)\n",
81
+ "#ntlk error fix\n",
82
+ "#https://github.com/delip/PyTorchNLPBook/issues/14\n",
83
+ "import nltk\n",
84
+ "nltk.download('punkt')\n",
85
+ "nltk.download('punkt_tab')\n",
86
+ "\n",
87
+ "#Auto agree to xtts\n",
88
+ "import os\n",
89
+ "os.environ[\"COQUI_TOS_AGREED\"] = \"1\"\n",
90
+ "\n",
91
+ "# To download the app.py and the Default_voice wav if not seen locally\n",
92
+ "!wget -O /content/app.py https://raw.githubusercontent.com/DrewThomasson/ebook2audiobookXTTS/main/app.py\n",
93
+ "!wget -O /content/default_voice.wav https://raw.githubusercontent.com/DrewThomasson/ebook2audiobookXTTS/main/default_voice.wav\n",
94
+ "\n",
95
+ "# Start the app with Share=True for the gradio interface\n",
96
+ "!python /content/app.py --share True"
97
+ ],
98
+ "metadata": {
99
+ "id": "658BTHueyLMo",
100
+ "cellView": "form"
101
+ },
102
+ "execution_count": null,
103
+ "outputs": []
104
+ }
105
+ ]
106
+ }
legacy/v1.0/Notebooks/kaggle-beta-of-ebook2audiobookxtts-ipynb.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata":{"kernelspec":{"name":"python3","display_name":"Python 3","language":"python"},"language_info":{"name":"python","version":"3.10.14","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"},"colab":{"provenance":[],"gpuType":"T4"},"accelerator":"GPU","kaggle":{"accelerator":"gpu","dataSources":[],"isInternetEnabled":true,"language":"python","sourceType":"notebook","isGpuEnabled":true}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"# IGNORE THESE ITS OLD LOL\n\n# install needed packages\n\n##!apt-get update\n\n##!apt-get install wget unzip git ffmpeg calibre\n\n\n\n# pip install requirments\n\n##!pip install tts==0.21.3 pydub nltk beautifulsoup4 ebooklib tqdm gradio\n\n\n\n##!pip install numpy==1.23\n\n##!pip install --no-binary lxml lxml\n\n##import os\n\n##os.kill(os.getpid(), 9)\n","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"gh3HEhmzuqVA","outputId":"81217d71-7576-43db-d56c-07ce11ea6517","jupyter":{"source_hidden":true},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"#!DEBIAN_FRONTEND=noninteractive\n\n!sudo apt-get update # && sudo apt-get -y upgrade\n\n!sudo apt-get -y install libegl1\n\n!sudo apt-get -y install libopengl0\n\n!sudo apt-get -y install libxcb-cursor0\n\n!sudo -v && wget -nv -O- https://download.calibre-ebook.com/linux-installer.sh | sudo sh /dev/stdin\n\n!sudo apt-get install -y ffmpeg\n\n!pip install tts pydub nltk beautifulsoup4 ebooklib tqdm\n\n!pip install numpy==1.26.4\n\n!pip install gradio","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"Edxj355K0rUz","outputId":"9fc5f4e1-1ba2-4814-a477-496f626c2772","trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"# Start the app with Share=True for the gradio interface\n\n\n\n#ntlk error fix\n\n#https://github.com/delip/PyTorchNLPBook/issues/14\n\nimport nltk\n\nnltk.download('punkt')\n\n\n\n#Auto agree to xtts\n\nimport os\n\nos.environ[\"COQUI_TOS_AGREED\"] = \"1\"\n\n\n\n!python /kaggle/working/app.py --share True","metadata":{"id":"EZIZva9Tvdbb","trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"#ntlk error fix\n\n#https://github.com/delip/PyTorchNLPBook/issues/14\n\nimport nltk\n\nnltk.download('punkt')\n\n\n\n#Auto agree to xtts\n\nimport os\n\nos.environ[\"COQUI_TOS_AGREED\"] = \"1\"\n\n\n\n# To download the app.py and the Default_voice wav if not seen locally\n\n!wget -O /kaggle/working/app.py https://raw.githubusercontent.com/DrewThomasson/ebook2audiobookXTTS/main/app.py\n\n!wget -O /kaggle/working/default_voice.wav https://raw.githubusercontent.com/DrewThomasson/ebook2audiobookXTTS/main/default_voice.wav\n\n\n\n# Start the app with Share=True for the gradio interface\n\n!python /kaggle/working/app.py --share True","metadata":{"id":"658BTHueyLMo","colab":{"base_uri":"https://localhost:8080/"},"outputId":"e293e70d-b25a-41bc-dbac-7ca1ddf1d3d2","trusted":true},"execution_count":null,"outputs":[]}]}
legacy/v1.0/README.md ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 📚 ebook2audiobook
2
+
3
+ Convert eBooks to audiobooks with chapters and metadata using Calibre and Coqui XTTS. Supports optional voice cloning and multiple languages!
4
+
5
+
6
+ #### 🖥️ Web GUI Interface
7
+ ![demo_web_gui](https://github.com/user-attachments/assets/85af88a7-05dd-4a29-91de-76a14cf5ef06)
8
+
9
+ <details>
10
+ <summary>Click to see images of Web GUI</summary>
11
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/b36c71cf-8e06-484c-a252-934e6b1d0c2f">
12
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/c0dab57a-d2d4-4658-bff9-3842ec90cb40">
13
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/0a99eeac-c521-4b21-8656-e064c1adc528">
14
+ </details>
15
+
16
+ ## README.md
17
+ - en [English](README.md)
18
+ - zh_CN [简体中文](readme/README_CN.md)
19
+ - ru [Русский](readme/README_RU.md)
20
+
21
+
22
+ ## 🌟 Features
23
+
24
+ - 📖 Converts eBooks to text format with Calibre.
25
+ - 📚 Splits eBook into chapters for organized audio.
26
+ - 🎙️ High-quality text-to-speech with Coqui XTTS.
27
+ - 🗣️ Optional voice cloning with your own voice file.
28
+ - 🌍 Supports multiple languages (English by default).
29
+ - 🖥️ Designed to run on 4GB RAM.
30
+
31
+ ## 🤗 [Huggingface space demo](https://huggingface.co/spaces/drewThomasson/ebook2audiobookXTTS)
32
+ - Huggingface space is running on free cpu tier so expect very slow or timeout lol, just don't give it giant files is all
33
+ - Best to duplicate space or run locally.
34
+
35
+ ## Free Google Colab [![Free Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DrewThomasson/ebook2audiobookXTTS/blob/main/Notebooks/colab_ebook2audiobookxtts.ipynb)
36
+
37
+
38
+ ## 🛠️ Requirements
39
+
40
+ - Python 3.10
41
+ - `coqui-tts` Python package
42
+ - Calibre (for eBook conversion)
43
+ - FFmpeg (for audiobook creation)
44
+ - Optional: Custom voice file for voice cloning
45
+
46
+
47
+ ### 🔧 Installation Instructions
48
+
49
+ 1. **Install Python 3.x** from [Python.org](https://www.python.org/downloads/).
50
+
51
+ 2. **Install Calibre**:
52
+ - **Ubuntu**: `sudo apt-get install -y calibre`
53
+ - **macOS**: `brew install calibre`
54
+ - **Windows** (Admin Powershell): `choco install calibre`
55
+
56
+ 3. **Install FFmpeg**:
57
+ - **Ubuntu**: `sudo apt-get install -y ffmpeg`
58
+ - **macOS**: `brew install ffmpeg`
59
+ - **Windows** (Admin Powershell): `choco install ffmpeg`
60
+
61
+ 4. **Optional: Install Mecab** (for non-Latin languages):
62
+ - **Ubuntu**: `sudo apt-get install -y mecab libmecab-dev mecab-ipadic-utf8`
63
+ - **macOS**: `brew install mecab`, `brew install mecab-ipadic`
64
+ - **Windows**: [mecab-website-to-install-manually](https://taku910.github.io/mecab/#download) (Note: Japanese support is limited)
65
+
66
+ 5. **Install Python packages**:
67
+ ```bash
68
+ pip install coqui-tts==0.24.2 pydub nltk beautifulsoup4 ebooklib tqdm gradio==4.44.0
69
+
70
+ python -m nltk.downloader punkt
71
+ python -m nltk.downloader punkt_tab
72
+ ```
73
+
74
+ **For non-Latin languages**:
75
+ ```bash
76
+ pip install mecab mecab-python3 unidic
77
+
78
+ python -m unidic download
79
+ ```
80
+
81
+ ## 🌐 Supported Languages
82
+
83
+ - **English (en)**
84
+ - **Spanish (es)**
85
+ - **French (fr)**
86
+ - **German (de)**
87
+ - **Italian (it)**
88
+ - **Portuguese (pt)**
89
+ - **Polish (pl)**
90
+ - **Turkish (tr)**
91
+ - **Russian (ru)**
92
+ - **Dutch (nl)**
93
+ - **Czech (cs)**
94
+ - **Arabic (ar)**
95
+ - **Chinese (zh-cn)**
96
+ - **Japanese (ja)**
97
+ - **Hungarian (hu)**
98
+ - **Korean (ko)**
99
+
100
+ Specify the language code when running the script in headless mode.
101
+ ## 🚀 Usage
102
+
103
+ ### 🖥️ Launching Gradio Web Interface
104
+
105
+ 1. **Run the Script**:
106
+ ```bash
107
+ python app.py
108
+ ```
109
+
110
+ 2. **Open the Web App**: Click the URL provided in the terminal to access the web app and convert eBooks.
111
+ 3. **For Public Link**: Add `--share True` to the end of it like this: `python app.py --share True`
112
+ - **[For More Parameters]**: use the `-h` parameter like this `python app.py -h`
113
+
114
+ ### 📝 Basic Headless Usage
115
+
116
+ ```bash
117
+ python app.py --headless True --ebook <path_to_ebook_file> --voice [path_to_voice_file] --language [language_code]
118
+ ```
119
+
120
+ - **<path_to_ebook_file>**: Path to your eBook file.
121
+ - **[path_to_voice_file]**: Optional for voice cloning.
122
+ - **[language_code]**: Optional to specify language.
123
+ - **[For More Parameters]**: use the `-h` parameter like this `python app.py -h`
124
+
125
+ ### 🧩 Headless Custom XTTS Model Usage
126
+
127
+ ```bash
128
+ python app.py --headless True --use_custom_model True --ebook <ebook_file_path> --voice <target_voice_file_path> --language <language> --custom_model <custom_model_path> --custom_config <custom_config_path> --custom_vocab <custom_vocab_path>
129
+ ```
130
+
131
+ - **<ebook_file_path>**: Path to your eBook file.
132
+ - **<target_voice_file_path>**: Optional for voice cloning.
133
+ - **<language>**: Optional to specify language.
134
+ - **<custom_model_path>**: Path to `model.pth`.
135
+ - **<custom_config_path>**: Path to `config.json`.
136
+ - **<custom_vocab_path>**: Path to `vocab.json`.
137
+ - **[For More Parameters]**: use the `-h` parameter like this `python app.py -h`
138
+
139
+
140
+ ### 🧩 Headless Custom XTTS Model Usage With Zip link to XTTS Fine-Tune Model 🌐
141
+
142
+ ```bash
143
+ python app.py --headless True --use_custom_model True --ebook <ebook_file_path> --voice <target_voice_file_path> --language <language> --custom_model_url <custom_model_URL_ZIP_path>
144
+ ```
145
+
146
+ - **<ebook_file_path>**: Path to your eBook file.
147
+ - **<target_voice_file_path>**: Optional for voice cloning.
148
+ - **<language>**: Optional to specify language.
149
+ - **<custom_model_URL_ZIP_path>**: URL Path to zip of Model folder. For Example this for the [xtts_David_Attenborough_fine_tune](https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/tree/main) `https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/resolve/main/Finished_model_files.zip?download=true`
150
+ - For a custom model a ref audio clip of the voice will also be needed:
151
+ [ref audio clip of David Attenborough](https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/blob/main/ref.wav)
152
+ - **[For More Parameters]**: use the `-h` parameter like this `python app.py -h`
153
+
154
+ ### 🔍 For Detailed Guide with list of all Parameters to use
155
+ ```bash
156
+ python app.py -h
157
+ ```
158
+ - This will output the following:
159
+ ```bash
160
+ usage: app.py [-h] [--share SHARE] [--headless HEADLESS] [--ebook EBOOK] [--voice VOICE]
161
+ [--language LANGUAGE] [--use_custom_model USE_CUSTOM_MODEL]
162
+ [--custom_model CUSTOM_MODEL] [--custom_config CUSTOM_CONFIG]
163
+ [--custom_vocab CUSTOM_VOCAB] [--custom_model_url CUSTOM_MODEL_URL]
164
+ [--temperature TEMPERATURE] [--length_penalty LENGTH_PENALTY]
165
+ [--repetition_penalty REPETITION_PENALTY] [--top_k TOP_K] [--top_p TOP_P]
166
+ [--speed SPEED] [--enable_text_splitting ENABLE_TEXT_SPLITTING]
167
+
168
+ Convert eBooks to Audiobooks using a Text-to-Speech model. You can either launch the
169
+ Gradio interface or run the script in headless mode for direct conversion.
170
+
171
+ options:
172
+ -h, --help show this help message and exit
173
+ --share SHARE Set to True to enable a public shareable Gradio link. Defaults
174
+ to False.
175
+ --headless HEADLESS Set to True to run in headless mode without the Gradio
176
+ interface. Defaults to False.
177
+ --ebook EBOOK Path to the ebook file for conversion. Required in headless
178
+ mode.
179
+ --voice VOICE Path to the target voice file for TTS. Optional, uses a default
180
+ voice if not provided.
181
+ --language LANGUAGE Language for the audiobook conversion. Options: en, es, fr, de,
182
+ it, pt, pl, tr, ru, nl, cs, ar, zh-cn, ja, hu, ko. Defaults to
183
+ English (en).
184
+ --use_custom_model USE_CUSTOM_MODEL
185
+ Set to True to use a custom TTS model. Defaults to False. Must
186
+ be True to use custom models, otherwise you'll get an error.
187
+ --custom_model CUSTOM_MODEL
188
+ Path to the custom model file (.pth). Required if using a custom
189
+ model.
190
+ --custom_config CUSTOM_CONFIG
191
+ Path to the custom config file (config.json). Required if using
192
+ a custom model.
193
+ --custom_vocab CUSTOM_VOCAB
194
+ Path to the custom vocab file (vocab.json). Required if using a
195
+ custom model.
196
+ --custom_model_url CUSTOM_MODEL_URL
197
+ URL to download the custom model as a zip file. Optional, but
198
+ will be used if provided. Examples include David Attenborough's
199
+ model: 'https://huggingface.co/drewThomasson/xtts_David_Attenbor
200
+ ough_fine_tune/resolve/main/Finished_model_files.zip?download=tr
201
+ ue'. More XTTS fine-tunes can be found on my Hugging Face at
202
+ 'https://huggingface.co/drewThomasson'.
203
+ --temperature TEMPERATURE
204
+ Temperature for the model. Defaults to 0.65. Higher Tempatures
205
+ will lead to more creative outputs IE: more Hallucinations.
206
+ Lower Tempatures will be more monotone outputs IE: less
207
+ Hallucinations.
208
+ --length_penalty LENGTH_PENALTY
209
+ A length penalty applied to the autoregressive decoder. Defaults
210
+ to 1.0. Not applied to custom models.
211
+ --repetition_penalty REPETITION_PENALTY
212
+ A penalty that prevents the autoregressive decoder from
213
+ repeating itself. Defaults to 2.0.
214
+ --top_k TOP_K Top-k sampling. Lower values mean more likely outputs and
215
+ increased audio generation speed. Defaults to 50.
216
+ --top_p TOP_P Top-p sampling. Lower values mean more likely outputs and
217
+ increased audio generation speed. Defaults to 0.8.
218
+ --speed SPEED Speed factor for the speech generation. IE: How fast the
219
+ Narrerator will speak. Defaults to 1.0.
220
+ --enable_text_splitting ENABLE_TEXT_SPLITTING
221
+ Enable splitting text into sentences. Defaults to True.
222
+
223
+ Example: python script.py --headless --ebook path_to_ebook --voice path_to_voice
224
+ --language en --use_custom_model True --custom_model model.pth --custom_config
225
+ config.json --custom_vocab vocab.json
226
+ ```
227
+
228
+
229
+ <details>
230
+ <summary>⚠️ Legacy-Depricated Old Use Instructions</summary>
231
+
232
+ ## 🚀 Usage
233
+
234
+ ## Legacy files have been moved to `ebook2audiobookXTTS/legacy/`
235
+
236
+ ### 🖥️ Gradio Web Interface
237
+
238
+ 1. **Run the Script**:
239
+ ```bash
240
+ python custom_model_ebook2audiobookXTTS_gradio.py
241
+ ```
242
+
243
+ 2. **Open the Web App**: Click the URL provided in the terminal to access the web app and convert eBooks.
244
+
245
+ ### 📝 Basic Usage
246
+
247
+ ```bash
248
+ python ebook2audiobook.py <path_to_ebook_file> [path_to_voice_file] [language_code]
249
+ ```
250
+
251
+ - **<path_to_ebook_file>**: Path to your eBook file.
252
+ - **[path_to_voice_file]**: Optional for voice cloning.
253
+ - **[language_code]**: Optional to specify language.
254
+
255
+ ### 🧩 Custom XTTS Model
256
+
257
+ ```bash
258
+ python custom_model_ebook2audiobookXTTS.py <ebook_file_path> <target_voice_file_path> <language> <custom_model_path> <custom_config_path> <custom_vocab_path>
259
+ ```
260
+
261
+ - **<ebook_file_path>**: Path to your eBook file.
262
+ - **<target_voice_file_path>**: Optional for voice cloning.
263
+ - **<language>**: Optional to specify language.
264
+ - **<custom_model_path>**: Path to `model.pth`.
265
+ - **<custom_config_path>**: Path to `config.json`.
266
+ - **<custom_vocab_path>**: Path to `vocab.json`.
267
+ </details>
268
+
269
+ ### 🐳 Using Docker
270
+
271
+ You can also use Docker to run the eBook to Audiobook converter. This method ensures consistency across different environments and simplifies setup.
272
+
273
+ #### 🚀 Running the Docker Container
274
+
275
+ To run the Docker container and start the Gradio interface, use the following command:
276
+
277
+ -Run with CPU only
278
+ ```powershell
279
+ docker run -it --rm -p 7860:7860 --platform=linux/amd64 athomasson2/ebook2audiobookxtts:huggingface python app.py
280
+ ```
281
+ -Run with GPU Speedup (Nvida graphics cards only)
282
+ ```powershell
283
+ docker run -it --rm --gpus all -p 7860:7860 --platform=linux/amd64 athomasson2/ebook2audiobookxtts:huggingface python app.py
284
+ ```
285
+
286
+ This command will start the Gradio interface on port 7860.(localhost:7860)
287
+ - For more options like running the docker in headless mode or making the gradio link public add the `-h` parameter after the `app.py` in the docker launch command
288
+ <details>
289
+ <summary><strong>Example of using docker in headless mode or modifying anything with the extra parameters + Full guide</strong></summary>
290
+
291
+ ## Example of using docker in headless mode
292
+
293
+ first for a docker pull of the latest with
294
+ ```bash
295
+ docker pull athomasson2/ebook2audiobookxtts:huggingface
296
+ ```
297
+
298
+ - Before you do run this you need to create a dir named "input-folder" in your current dir which will be linked, This is where you can put your input files for the docker image to see
299
+ ```bash
300
+ mkdir input-folder && mkdir Audiobooks
301
+ ```
302
+
303
+ - In the command below swap out **YOUR_INPUT_FILE.TXT** with the name of your input file
304
+
305
+ ```bash
306
+ docker run -it --rm \
307
+ -v $(pwd)/input-folder:/home/user/app/input_folder \
308
+ -v $(pwd)/Audiobooks:/home/user/app/Audiobooks \
309
+ --platform linux/amd64 \
310
+ athomasson2/ebook2audiobookxtts:huggingface \
311
+ python app.py --headless True --ebook /home/user/app/input_folder/YOUR_INPUT_FILE.TXT
312
+ ```
313
+
314
+ - And that should be it!
315
+
316
+ - The output Audiobooks will be found in the Audiobook folder which will also be located in your local dir you ran this docker command in
317
+
318
+
319
+ ## To get the help command for the other parameters this program has you can run this
320
+
321
+ ```bash
322
+ docker run -it --rm \
323
+ --platform linux/amd64 \
324
+ athomasson2/ebook2audiobookxtts:huggingface \
325
+ python app.py -h
326
+
327
+ ```
328
+
329
+
330
+ and that will output this
331
+
332
+ ```bash
333
+ user/app/ebook2audiobookXTTS/input-folder -v $(pwd)/Audiobooks:/home/user/app/ebook2audiobookXTTS/Audiobooks --memory="4g" --network none --platform linux/amd64 athomasson2/ebook2audiobookxtts:huggingface python app.py -h
334
+ starting...
335
+ usage: app.py [-h] [--share SHARE] [--headless HEADLESS] [--ebook EBOOK] [--voice VOICE]
336
+ [--language LANGUAGE] [--use_custom_model USE_CUSTOM_MODEL]
337
+ [--custom_model CUSTOM_MODEL] [--custom_config CUSTOM_CONFIG]
338
+ [--custom_vocab CUSTOM_VOCAB] [--custom_model_url CUSTOM_MODEL_URL]
339
+ [--temperature TEMPERATURE] [--length_penalty LENGTH_PENALTY]
340
+ [--repetition_penalty REPETITION_PENALTY] [--top_k TOP_K] [--top_p TOP_P]
341
+ [--speed SPEED] [--enable_text_splitting ENABLE_TEXT_SPLITTING]
342
+
343
+ Convert eBooks to Audiobooks using a Text-to-Speech model. You can either launch the
344
+ Gradio interface or run the script in headless mode for direct conversion.
345
+
346
+ options:
347
+ -h, --help show this help message and exit
348
+ --share SHARE Set to True to enable a public shareable Gradio link. Defaults
349
+ to False.
350
+ --headless HEADLESS Set to True to run in headless mode without the Gradio
351
+ interface. Defaults to False.
352
+ --ebook EBOOK Path to the ebook file for conversion. Required in headless
353
+ mode.
354
+ --voice VOICE Path to the target voice file for TTS. Optional, uses a default
355
+ voice if not provided.
356
+ --language LANGUAGE Language for the audiobook conversion. Options: en, es, fr, de,
357
+ it, pt, pl, tr, ru, nl, cs, ar, zh-cn, ja, hu, ko. Defaults to
358
+ English (en).
359
+ --use_custom_model USE_CUSTOM_MODEL
360
+ Set to True to use a custom TTS model. Defaults to False. Must
361
+ be True to use custom models, otherwise you'll get an error.
362
+ --custom_model CUSTOM_MODEL
363
+ Path to the custom model file (.pth). Required if using a custom
364
+ model.
365
+ --custom_config CUSTOM_CONFIG
366
+ Path to the custom config file (config.json). Required if using
367
+ a custom model.
368
+ --custom_vocab CUSTOM_VOCAB
369
+ Path to the custom vocab file (vocab.json). Required if using a
370
+ custom model.
371
+ --custom_model_url CUSTOM_MODEL_URL
372
+ URL to download the custom model as a zip file. Optional, but
373
+ will be used if provided. Examples include David Attenborough's
374
+ model: 'https://huggingface.co/drewThomasson/xtts_David_Attenbor
375
+ ough_fine_tune/resolve/main/Finished_model_files.zip?download=tr
376
+ ue'. More XTTS fine-tunes can be found on my Hugging Face at
377
+ 'https://huggingface.co/drewThomasson'.
378
+ --temperature TEMPERATURE
379
+ Temperature for the model. Defaults to 0.65. Higher Tempatures
380
+ will lead to more creative outputs IE: more Hallucinations.
381
+ Lower Tempatures will be more monotone outputs IE: less
382
+ Hallucinations.
383
+ --length_penalty LENGTH_PENALTY
384
+ A length penalty applied to the autoregressive decoder. Defaults
385
+ to 1.0. Not applied to custom models.
386
+ --repetition_penalty REPETITION_PENALTY
387
+ A penalty that prevents the autoregressive decoder from
388
+ repeating itself. Defaults to 2.0.
389
+ --top_k TOP_K Top-k sampling. Lower values mean more likely outputs and
390
+ increased audio generation speed. Defaults to 50.
391
+ --top_p TOP_P Top-p sampling. Lower values mean more likely outputs and
392
+ increased audio generation speed. Defaults to 0.8.
393
+ --speed SPEED Speed factor for the speech generation. IE: How fast the
394
+ Narrerator will speak. Defaults to 1.0.
395
+ --enable_text_splitting ENABLE_TEXT_SPLITTING
396
+ Enable splitting text into sentences. Defaults to True.
397
+
398
+ Example: python script.py --headless --ebook path_to_ebook --voice path_to_voice
399
+ --language en --use_custom_model True --custom_model model.pth --custom_config
400
+ config.json --custom_vocab vocab.json
401
+ ```
402
+ </details>
403
+
404
+ #### 🖥️ Docker GUI
405
+ ![demo_web_gui](https://github.com/user-attachments/assets/85af88a7-05dd-4a29-91de-76a14cf5ef06)
406
+
407
+ <details>
408
+ <summary>Click to see images of Web GUI</summary>
409
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/b36c71cf-8e06-484c-a252-934e6b1d0c2f">
410
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/c0dab57a-d2d4-4658-bff9-3842ec90cb40">
411
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/0a99eeac-c521-4b21-8656-e064c1adc528">
412
+ </details>
413
+ ### 🛠️ For Custom Xtts Models
414
+
415
+ Models built to be better at a specific voice. Check out my Hugging Face page [here](https://huggingface.co/drewThomasson).
416
+
417
+ To use a custom model, paste the link of the `Finished_model_files.zip` file like this:
418
+
419
+ [David Attenborough fine tuned Finished_model_files.zip](https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/resolve/main/Finished_model_files.zip?download=true)
420
+
421
+ For a custom model a ref audio clip of the voice will also be needed:
422
+ [ref audio clip of David Attenborough](https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/blob/main/ref.wav)
423
+
424
+
425
+
426
+ More details can be found at the [Dockerfile Hub Page]([https://github.com/DrewThomasson/ebook2audiobookXTTS](https://hub.docker.com/repository/docker/athomasson2/ebook2audiobookxtts/general)).
427
+
428
+ ## 🌐 Fine Tuned Xtts models
429
+
430
+ To find already fine-tuned XTTS models, visit [this Hugging Face link](https://huggingface.co/drewThomasson) 🌐. Search for models that include "xtts fine tune" in their names.
431
+
432
+ ## 🎥 Demos
433
+
434
+ Rainy day voice
435
+
436
+ https://github.com/user-attachments/assets/8486603c-38b1-43ce-9639-73757dfb1031
437
+
438
+ David Attenborough voice
439
+
440
+ https://github.com/user-attachments/assets/47c846a7-9e51-4eb9-844a-7460402a20a8
441
+
442
+
443
+ ## �� [Huggingface space demo](https://huggingface.co/spaces/drewThomasson/ebook2audiobookXTTS)
444
+ - Huggingface space is running on free cpu tier so expect very slow or timeout lol, just don't give it giant files is all
445
+ - Best to duplicate space or run locally.
446
+
447
+ ## Free Google Colab [![Free Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DrewThomasson/ebook2audiobookXTTS/blob/main/Notebooks/colab_ebook2audiobookxtts.ipynb)
448
+
449
+
450
+
451
+ ## 📚 Supported eBook Formats
452
+
453
+ - `.epub`, `.pdf`, `.mobi`, `.txt`, `.html`, `.rtf`, `.chm`, `.lit`, `.pdb`, `.fb2`, `.odt`, `.cbr`, `.cbz`, `.prc`, `.lrf`, `.pml`, `.snb`, `.cbc`, `.rb`, `.tcr`
454
+ - **Best results**: `.epub` or `.mobi` for automatic chapter detection
455
+
456
+ ## 📂 Output
457
+
458
+ - Creates an `.m4b` file with metadata and chapters.
459
+ - **Example Output**: ![Example](https://github.com/DrewThomasson/VoxNovel/blob/dc5197dff97252fa44c391dc0596902d71278a88/readme_files/example_in_app.jpeg)
460
+
461
+ ## 🛠️ Common Issues:
462
+ - "It's slow!" - On CPU only this is very slow, and you can only get speedups though a NVIDIA GPU. [Discussion about this](https://github.com/DrewThomasson/ebook2audiobookXTTS/discussions/19#discussioncomment-10879846) For faster multilingual generation I would suggest my other [project that uses piper-tts](https://github.com/DrewThomasson/ebook2audiobookpiper-tts) instead(It doesn't have zero-shot voice cloning though, and is siri quality voices, but it is much faster on cpu.)
463
+ - "I'm having dependency issues" - Just use the docker, its fully self contained and has a headless mode, add `-h` parameter after the `app.py` in the docker run command for more information.
464
+ - "Im getting a truncated audio issue!" - PLEASE MAKE AN ISSUE OF THIS, I don't speak every language and I need advise from each person to fine tune my sentense splitting function on any other languages.😊
465
+ - "The loading bar is stuck at 30% in the web gui!" - The web gui loading bar is extreamly basic as its just split between the three loading steps, refer to the terminal and what sentense it's on for a more accurate gauge on where is it progress wise.
466
+
467
+ ## What I need help with! 🙌
468
+ ## [Full list of things can be found here](https://github.com/DrewThomasson/ebook2audiobookXTTS/issues/32)
469
+ - Any help from people speaking any of the supported langues to help with proper sentence splitting methods
470
+ - Potentially creating readme Guides for Multiple languages(Becuase the only language I know is English 😔)
471
+
472
+ ## 🙏 Special Thanks
473
+
474
+ - **Coqui TTS**: [Coqui TTS GitHub](https://github.com/coqui-ai/TTS)
475
+ - **Calibre**: [Calibre Website](https://calibre-ebook.com)
476
+
477
+ - [@shakenbake15 for better chapter saving method](https://github.com/DrewThomasson/ebook2audiobookXTTS/issues/8)
478
+
legacy/v1.0/app.py ADDED
@@ -0,0 +1,1041 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+
3
+ import argparse
4
+
5
+ language_options = [
6
+ "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko"
7
+ ]
8
+ char_limits = {
9
+ "en": 250, # English
10
+ "es": 239, # Spanish
11
+ "fr": 273, # French
12
+ "de": 253, # German
13
+ "it": 213, # Italian
14
+ "pt": 203, # Portuguese
15
+ "pl": 224, # Polish
16
+ "tr": 226, # Turkish
17
+ "ru": 182, # Russian
18
+ "nl": 251, # Dutch
19
+ "cs": 186, # Czech
20
+ "ar": 166, # Arabic
21
+ "zh-cn": 82, # Chinese (Simplified)
22
+ "ja": 71, # Japanese
23
+ "hu": 224, # Hungarian
24
+ "ko": 95, # Korean
25
+ }
26
+
27
+ # Mapping of language codes to NLTK's supported language names
28
+ language_mapping = {
29
+ "en": "english",
30
+ "de": "german",
31
+ "fr": "french",
32
+ "es": "spanish",
33
+ "it": "italian",
34
+ "pt": "portuguese",
35
+ "nl": "dutch",
36
+ "pl": "polish",
37
+ "cs": "czech",
38
+ "ru": "russian",
39
+ "tr": "turkish",
40
+ "el": "greek",
41
+ "et": "estonian",
42
+ "no": "norwegian",
43
+ "ml": "malayalam",
44
+ "sl": "slovene",
45
+ "da": "danish",
46
+ "fi": "finnish",
47
+ "sv": "swedish"
48
+ }
49
+
50
+
51
+ # Convert the list of languages to a string to display in the help text
52
+ language_options_str = ", ".join(language_options)
53
+
54
+ # Argument parser to handle optional parameters with descriptions
55
+ parser = argparse.ArgumentParser(
56
+ description="Convert eBooks to Audiobooks using a Text-to-Speech model. You can either launch the Gradio interface or run the script in headless mode for direct conversion.",
57
+ epilog="Example: python script.py --headless --ebook path_to_ebook --voice path_to_voice --language en --use_custom_model True --custom_model model.pth --custom_config config.json --custom_vocab vocab.json"
58
+ )
59
+ parser.add_argument("--share", type=bool, default=False, help="Set to True to enable a public shareable Gradio link. Defaults to False.")
60
+ parser.add_argument("--headless", type=bool, default=False, help="Set to True to run in headless mode without the Gradio interface. Defaults to False.")
61
+ parser.add_argument("--ebook", type=str, help="Path to the ebook file for conversion. Required in headless mode.")
62
+ parser.add_argument("--voice", type=str, help="Path to the target voice file for TTS. Optional, uses a default voice if not provided.")
63
+ parser.add_argument("--language", type=str, default="en",
64
+ help=f"Language for the audiobook conversion. Options: {language_options_str}. Defaults to English (en).")
65
+ parser.add_argument("--use_custom_model", type=bool, default=False,
66
+ help="Set to True to use a custom TTS model. Defaults to False. Must be True to use custom models, otherwise you'll get an error.")
67
+ parser.add_argument("--custom_model", type=str, help="Path to the custom model file (.pth). Required if using a custom model.")
68
+ parser.add_argument("--custom_config", type=str, help="Path to the custom config file (config.json). Required if using a custom model.")
69
+ parser.add_argument("--custom_vocab", type=str, help="Path to the custom vocab file (vocab.json). Required if using a custom model.")
70
+ parser.add_argument("--custom_model_url", type=str,
71
+ help=("URL to download the custom model as a zip file. Optional, but will be used if provided. "
72
+ "Examples include David Attenborough's model: "
73
+ "'https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/resolve/main/Finished_model_files.zip?download=true'. "
74
+ "More XTTS fine-tunes can be found on my Hugging Face at 'https://huggingface.co/drewThomasson'."))
75
+ parser.add_argument("--temperature", type=float, default=0.65, help="Temperature for the model. Defaults to 0.65. Higher Tempatures will lead to more creative outputs IE: more Hallucinations. Lower Tempatures will be more monotone outputs IE: less Hallucinations.")
76
+ parser.add_argument("--length_penalty", type=float, default=1.0, help="A length penalty applied to the autoregressive decoder. Defaults to 1.0. Not applied to custom models.")
77
+ parser.add_argument("--repetition_penalty", type=float, default=2.0, help="A penalty that prevents the autoregressive decoder from repeating itself. Defaults to 2.0.")
78
+ parser.add_argument("--top_k", type=int, default=50, help="Top-k sampling. Lower values mean more likely outputs and increased audio generation speed. Defaults to 50.")
79
+ parser.add_argument("--top_p", type=float, default=0.8, help="Top-p sampling. Lower values mean more likely outputs and increased audio generation speed. Defaults to 0.8.")
80
+ parser.add_argument("--speed", type=float, default=1.0, help="Speed factor for the speech generation. IE: How fast the Narrerator will speak. Defaults to 1.0.")
81
+ parser.add_argument("--enable_text_splitting", type=bool, default=False, help="Enable splitting text into sentences. Defaults to True.")
82
+
83
+ args = parser.parse_args()
84
+
85
+
86
+
87
+ import os
88
+ import shutil
89
+ import subprocess
90
+ import re
91
+ from pydub import AudioSegment
92
+ import tempfile
93
+ from pydub import AudioSegment
94
+ import nltk
95
+ from nltk.tokenize import sent_tokenize
96
+ import sys
97
+ import torch
98
+ from TTS.api import TTS
99
+ from TTS.tts.configs.xtts_config import XttsConfig
100
+ from TTS.tts.models.xtts import Xtts
101
+ from tqdm import tqdm
102
+ import gradio as gr
103
+ from gradio import Progress
104
+ import urllib.request
105
+ import zipfile
106
+ import socket
107
+ #import MeCab
108
+ #import unidic
109
+
110
+ #nltk.download('punkt_tab')
111
+
112
+ # Import the locally stored Xtts default model
113
+ #import import_locally_stored_tts_model_files
114
+
115
+ #make the nltk folder point to the nltk folder in the app dir
116
+ #nltk.data.path.append('/home/user/app/nltk_data')
117
+
118
+ # Download UniDic if it's not already installed
119
+ #unidic.download()
120
+
121
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
122
+ print(f"Device selected is: {device}")
123
+
124
+ #nltk.download('punkt') # Make sure to download the necessary models
125
+
126
+
127
+ def download_and_extract_zip(url, extract_to='.'):
128
+ try:
129
+ # Ensure the directory exists
130
+ os.makedirs(extract_to, exist_ok=True)
131
+
132
+ zip_path = os.path.join(extract_to, 'model.zip')
133
+
134
+ # Download with progress bar
135
+ with tqdm(unit='B', unit_scale=True, miniters=1, desc="Downloading Model") as t:
136
+ def reporthook(blocknum, blocksize, totalsize):
137
+ t.total = totalsize
138
+ t.update(blocknum * blocksize - t.n)
139
+
140
+ urllib.request.urlretrieve(url, zip_path, reporthook=reporthook)
141
+ print(f"Downloaded zip file to {zip_path}")
142
+
143
+ # Unzipping with progress bar
144
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
145
+ files = zip_ref.namelist()
146
+ with tqdm(total=len(files), unit="file", desc="Extracting Files") as t:
147
+ for file in files:
148
+ if not file.endswith('/'): # Skip directories
149
+ # Extract the file to the temporary directory
150
+ extracted_path = zip_ref.extract(file, extract_to)
151
+ # Move the file to the base directory
152
+ base_file_path = os.path.join(extract_to, os.path.basename(file))
153
+ os.rename(extracted_path, base_file_path)
154
+ t.update(1)
155
+
156
+ # Cleanup: Remove the ZIP file and any empty folders
157
+ os.remove(zip_path)
158
+ for root, dirs, files in os.walk(extract_to, topdown=False):
159
+ for name in dirs:
160
+ os.rmdir(os.path.join(root, name))
161
+ print(f"Extracted files to {extract_to}")
162
+
163
+ # Check if all required files are present
164
+ required_files = ['model.pth', 'config.json', 'vocab.json_']
165
+ missing_files = [file for file in required_files if not os.path.exists(os.path.join(extract_to, file))]
166
+
167
+ if not missing_files:
168
+ print("All required files (model.pth, config.json, vocab.json_) found.")
169
+ else:
170
+ print(f"Missing files: {', '.join(missing_files)}")
171
+
172
+ except Exception as e:
173
+ print(f"Failed to download or extract zip file: {e}")
174
+
175
+
176
+
177
+ def is_folder_empty(folder_path):
178
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
179
+ # List directory contents
180
+ if not os.listdir(folder_path):
181
+ return True # The folder is empty
182
+ else:
183
+ return False # The folder is not empty
184
+ else:
185
+ print(f"The path {folder_path} is not a valid folder.")
186
+ return None # The path is not a valid folder
187
+
188
+ def remove_folder_with_contents(folder_path):
189
+ try:
190
+ shutil.rmtree(folder_path)
191
+ print(f"Successfully removed {folder_path} and all of its contents.")
192
+ except Exception as e:
193
+ print(f"Error removing {folder_path}: {e}")
194
+
195
+
196
+
197
+
198
+ def wipe_folder(folder_path):
199
+ # Check if the folder exists
200
+ if not os.path.exists(folder_path):
201
+ print(f"The folder {folder_path} does not exist.")
202
+ return
203
+
204
+ # Iterate over all the items in the given folder
205
+ for item in os.listdir(folder_path):
206
+ item_path = os.path.join(folder_path, item)
207
+ # If it's a file, remove it and print a message
208
+ if os.path.isfile(item_path):
209
+ os.remove(item_path)
210
+ print(f"Removed file: {item_path}")
211
+ # If it's a directory, remove it recursively and print a message
212
+ elif os.path.isdir(item_path):
213
+ shutil.rmtree(item_path)
214
+ print(f"Removed directory and its contents: {item_path}")
215
+
216
+ print(f"All contents wiped from {folder_path}.")
217
+
218
+
219
+ # Example usage
220
+ # folder_to_wipe = 'path_to_your_folder'
221
+ # wipe_folder(folder_to_wipe)
222
+
223
+
224
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
225
+ # Function to sort chapters based on their numeric order
226
+ def sort_key(chapter_file):
227
+ numbers = re.findall(r'\d+', chapter_file)
228
+ return int(numbers[0]) if numbers else 0
229
+
230
+ # Extract metadata and cover image from the eBook file
231
+ def extract_metadata_and_cover(ebook_path):
232
+ try:
233
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
234
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
235
+ if os.path.exists(cover_path):
236
+ return cover_path
237
+ except Exception as e:
238
+ print(f"Error extracting eBook metadata or cover: {e}")
239
+ return None
240
+ # Combine WAV files into a single file
241
+ def combine_wav_files(chapter_files, output_path, batch_size=256):
242
+ # Initialize an empty audio segment
243
+ combined_audio = AudioSegment.empty()
244
+
245
+ # Process the chapter files in batches
246
+ for i in range(0, len(chapter_files), batch_size):
247
+ batch_files = chapter_files[i:i + batch_size]
248
+ batch_audio = AudioSegment.empty() # Initialize an empty AudioSegment for the batch
249
+
250
+ # Sequentially append each file in the current batch to the batch_audio
251
+ for chapter_file in batch_files:
252
+ audio_segment = AudioSegment.from_wav(chapter_file)
253
+ batch_audio += audio_segment
254
+
255
+ # Combine the batch audio with the overall combined_audio
256
+ combined_audio += batch_audio
257
+
258
+ # Export the combined audio to the output file path
259
+ combined_audio.export(output_path, format='wav')
260
+ print(f"Combined audio saved to {output_path}")
261
+
262
+ # Function to generate metadata for M4B chapters
263
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
264
+ with open(metadata_file, 'w') as file:
265
+ file.write(';FFMETADATA1\n')
266
+ start_time = 0
267
+ for index, chapter_file in enumerate(chapter_files):
268
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
269
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
270
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
271
+ start_time += duration_ms
272
+
273
+ # Generate the final M4B file using ffmpeg
274
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
275
+ # Ensure the output directory exists
276
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
277
+
278
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
279
+ if cover_image:
280
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
281
+ else:
282
+ ffmpeg_cmd += ['-map', '0:a']
283
+
284
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
285
+ if cover_image:
286
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
287
+ ffmpeg_cmd += [output_m4b]
288
+
289
+ subprocess.run(ffmpeg_cmd, check=True)
290
+
291
+
292
+
293
+ # Main logic
294
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
295
+ temp_dir = tempfile.gettempdir()
296
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
297
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
298
+ cover_image = extract_metadata_and_cover(ebook_file)
299
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
300
+
301
+ combine_wav_files(chapter_files, temp_combined_wav)
302
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
303
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
304
+
305
+ # Cleanup
306
+ if os.path.exists(temp_combined_wav):
307
+ os.remove(temp_combined_wav)
308
+ if os.path.exists(metadata_file):
309
+ os.remove(metadata_file)
310
+ if cover_image and os.path.exists(cover_image):
311
+ os.remove(cover_image)
312
+
313
+ # Example usage
314
+ # create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')
315
+
316
+
317
+
318
+
319
+
320
+
321
+ #this code right here isnt the book grabbing thing but its before to refrence in order to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
322
+ import os
323
+ import subprocess
324
+ import ebooklib
325
+ from ebooklib import epub
326
+ from bs4 import BeautifulSoup
327
+ import re
328
+ import csv
329
+ import nltk
330
+
331
+ # Only run the main script if Value is True
332
+ def create_chapter_labeled_book(ebook_file_path):
333
+ # Function to ensure the existence of a directory
334
+ def ensure_directory(directory_path):
335
+ if not os.path.exists(directory_path):
336
+ os.makedirs(directory_path)
337
+ print(f"Created directory: {directory_path}")
338
+
339
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
340
+
341
+ def convert_to_epub(input_path, output_path):
342
+ # Convert the ebook to EPUB format using Calibre's ebook-convert
343
+ try:
344
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
345
+ except subprocess.CalledProcessError as e:
346
+ print(f"An error occurred while converting the eBook: {e}")
347
+ return False
348
+ return True
349
+
350
+ def save_chapters_as_text(epub_path):
351
+ # Create the directory if it doesn't exist
352
+ directory = os.path.join(".", "Working_files", "temp_ebook")
353
+ ensure_directory(directory)
354
+
355
+ # Open the EPUB file
356
+ book = epub.read_epub(epub_path)
357
+
358
+ previous_chapter_text = ''
359
+ previous_filename = ''
360
+ chapter_counter = 0
361
+
362
+ # Iterate through the items in the EPUB file
363
+ for item in book.get_items():
364
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
365
+ # Use BeautifulSoup to parse HTML content
366
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
367
+ text = soup.get_text()
368
+
369
+ # Check if the text is not empty
370
+ if text.strip():
371
+ if len(text) < 2300 and previous_filename:
372
+ # Append text to the previous chapter if it's short
373
+ with open(previous_filename, 'a', encoding='utf-8') as file:
374
+ file.write('\n' + text)
375
+ else:
376
+ # Create a new chapter file and increment the counter
377
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
378
+ chapter_counter += 1
379
+ with open(previous_filename, 'w', encoding='utf-8') as file:
380
+ file.write(text)
381
+ print(f"Saved chapter: {previous_filename}")
382
+
383
+ # Example usage
384
+ input_ebook = ebook_file_path # Replace with your eBook file path
385
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
386
+
387
+
388
+ if os.path.exists(output_epub):
389
+ os.remove(output_epub)
390
+ print(f"File {output_epub} has been removed.")
391
+ else:
392
+ print(f"The file {output_epub} does not exist.")
393
+
394
+ if convert_to_epub(input_ebook, output_epub):
395
+ save_chapters_as_text(output_epub)
396
+
397
+ # Download the necessary NLTK data (if not already present)
398
+ #nltk.download('punkt')
399
+
400
+ def process_chapter_files(folder_path, output_csv):
401
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
402
+ writer = csv.writer(csvfile)
403
+ # Write the header row
404
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
405
+
406
+ # Process each chapter file
407
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
408
+ for filename in chapter_files:
409
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
410
+ chapter_number = int(filename.split('_')[1].split('.')[0])
411
+ file_path = os.path.join(folder_path, filename)
412
+
413
+ try:
414
+ with open(file_path, 'r', encoding='utf-8') as file:
415
+ text = file.read()
416
+ # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
417
+ if text:
418
+ text = "NEWCHAPTERABC" + text
419
+ sentences = nltk.tokenize.sent_tokenize(text)
420
+ for sentence in sentences:
421
+ start_location = text.find(sentence)
422
+ end_location = start_location + len(sentence)
423
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
424
+ except Exception as e:
425
+ print(f"Error processing file {filename}: {e}")
426
+
427
+ # Example usage
428
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
429
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
430
+
431
+ process_chapter_files(folder_path, output_csv)
432
+
433
+ def sort_key(filename):
434
+ """Extract chapter number for sorting."""
435
+ match = re.search(r'chapter_(\d+)\.txt', filename)
436
+ return int(match.group(1)) if match else 0
437
+
438
+ def combine_chapters(input_folder, output_file):
439
+ # Create the output folder if it doesn't exist
440
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
441
+
442
+ # List all txt files and sort them by chapter number
443
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
444
+ sorted_files = sorted(files, key=sort_key)
445
+
446
+ with open(output_file, 'w', encoding='utf-8') as outfile: # Specify UTF-8 encoding here
447
+ for i, filename in enumerate(sorted_files):
448
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile: # And here
449
+ outfile.write(infile.read())
450
+ # Add the marker unless it's the last file
451
+ if i < len(sorted_files) - 1:
452
+ outfile.write("\nNEWCHAPTERABC\n")
453
+
454
+ # Paths
455
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
456
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
457
+
458
+
459
+ # Combine the chapters
460
+ combine_chapters(input_folder, output_file)
461
+
462
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
463
+
464
+
465
+ #create_chapter_labeled_book()
466
+
467
+
468
+
469
+
470
+ import os
471
+ import subprocess
472
+ import sys
473
+ import torchaudio
474
+
475
+ # Check if Calibre's ebook-convert tool is installed
476
+ def calibre_installed():
477
+ try:
478
+ subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
479
+ return True
480
+ except FileNotFoundError:
481
+ print("Calibre is not installed. Please install Calibre for this functionality.")
482
+ return False
483
+
484
+
485
+ import os
486
+ import torch
487
+ from TTS.api import TTS
488
+ from nltk.tokenize import sent_tokenize
489
+ from pydub import AudioSegment
490
+
491
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
492
+ default_language_code = "en"
493
+
494
+
495
+ # Function to check if vocab.json exists and rename it
496
+ def rename_vocab_file_if_exists(directory):
497
+ vocab_path = os.path.join(directory, 'vocab.json')
498
+ new_vocab_path = os.path.join(directory, 'vocab.json_')
499
+
500
+ # Check if vocab.json exists
501
+ if os.path.exists(vocab_path):
502
+ # Rename the file
503
+ os.rename(vocab_path, new_vocab_path)
504
+ print(f"Renamed {vocab_path} to {new_vocab_path}")
505
+ return True # Return True if the file was found and renamed
506
+
507
+
508
+ def combine_wav_files(input_directory, output_directory, file_name):
509
+ # Ensure that the output directory exists, create it if necessary
510
+ os.makedirs(output_directory, exist_ok=True)
511
+
512
+ # Specify the output file path
513
+ output_file_path = os.path.join(output_directory, file_name)
514
+
515
+ # Initialize an empty audio segment
516
+ combined_audio = AudioSegment.empty()
517
+
518
+ # Get a list of all .wav files in the specified input directory and sort them
519
+ input_file_paths = sorted(
520
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
521
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
522
+ )
523
+
524
+ # Sequentially append each file to the combined_audio
525
+ for input_file_path in input_file_paths:
526
+ audio_segment = AudioSegment.from_wav(input_file_path)
527
+ combined_audio += audio_segment
528
+
529
+ # Export the combined audio to the output file path
530
+ combined_audio.export(output_file_path, format='wav')
531
+
532
+ print(f"Combined audio saved to {output_file_path}")
533
+
534
+ # Function to split long strings into parts
535
+ # Modify the function to handle special cases for Chinese, Italian, and default for others
536
+ def split_long_sentence(sentence, language='en', max_pauses=10):
537
+ """
538
+ Splits a sentence into parts based on length or number of pauses without recursion.
539
+
540
+ :param sentence: The sentence to split.
541
+ :param language: The language of the sentence (default is English).
542
+ :param max_pauses: Maximum allowed number of pauses in a sentence.
543
+ :return: A list of sentence parts that meet the criteria.
544
+ """
545
+ #Get the Max character length for the selected language -2 : with a default of 248 if no language is found
546
+ max_length = (char_limits.get(language, 250)-2)
547
+
548
+ # Adjust the pause punctuation symbols based on language
549
+ if language == 'zh-cn':
550
+ punctuation = [',', '。', ';', '?', '!'] # Chinese-specific pause punctuation including sentence-ending marks
551
+ elif language == 'ja':
552
+ punctuation = ['、', '。', ';', '?', '!'] # Japanese-specific pause punctuation
553
+ elif language == 'ko':
554
+ punctuation = [',', '。', ';', '?', '!'] # Korean-specific pause punctuation
555
+ elif language == 'ar':
556
+ punctuation = ['،', '؛', '؟', '!', '·', '؛', '.'] # Arabic-specific punctuation
557
+ elif language == 'en':
558
+ punctuation = [',', ';', '.'] # English-specific pause punctuation
559
+ else:
560
+ # Default pause punctuation for other languages (es, fr, de, it, pt, pl, cs, ru, nl, tr, hu)
561
+ punctuation = [',', '.', ';', ':', '?', '!']
562
+
563
+
564
+
565
+ parts = []
566
+ while len(sentence) > max_length or sum(sentence.count(p) for p in punctuation) > max_pauses:
567
+ possible_splits = [i for i, char in enumerate(sentence) if char in punctuation and i < max_length]
568
+ if possible_splits:
569
+ # Find the best place to split the sentence, preferring the last possible split to keep parts longer
570
+ split_at = possible_splits[-1] + 1
571
+ else:
572
+ # If no punctuation to split on within max_length, split at max_length
573
+ split_at = max_length
574
+
575
+ # Split the sentence and add the first part to the list
576
+ parts.append(sentence[:split_at].strip())
577
+ sentence = sentence[split_at:].strip()
578
+
579
+ # Add the remaining part of the sentence
580
+ parts.append(sentence)
581
+ return parts
582
+
583
+ """
584
+ if 'tts' not in locals():
585
+ tts = TTS(selected_tts_model, progress_bar=True).to(device)
586
+ """
587
+ from tqdm import tqdm
588
+
589
+ # Convert chapters to audio using XTTS
590
+
591
+ def convert_chapters_to_audio_custom_model(chapters_dir, output_audio_dir, temperature, length_penalty, repetition_penalty, top_k, top_p, speed, enable_text_splitting, target_voice_path=None, language=None, custom_model=None):
592
+
593
+ if target_voice_path==None:
594
+ target_voice_path = default_target_voice_path
595
+
596
+ if custom_model:
597
+ print("Loading custom model...")
598
+ config = XttsConfig()
599
+ config.load_json(custom_model['config'])
600
+ model = Xtts.init_from_config(config)
601
+ model.load_checkpoint(config, checkpoint_path=custom_model['model'], vocab_path=custom_model['vocab'], use_deepspeed=False)
602
+ model.to(device)
603
+ print("Computing speaker latents...")
604
+ gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[target_voice_path])
605
+ else:
606
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
607
+ tts = TTS(selected_tts_model, progress_bar=False).to(device)
608
+
609
+ if not os.path.exists(output_audio_dir):
610
+ os.makedirs(output_audio_dir)
611
+
612
+ for chapter_file in sorted(os.listdir(chapters_dir)):
613
+ if chapter_file.endswith('.txt'):
614
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
615
+ if match:
616
+ chapter_num = int(match.group(1))
617
+ else:
618
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
619
+ continue
620
+
621
+ chapter_path = os.path.join(chapters_dir, chapter_file)
622
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
623
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
624
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
625
+ os.makedirs(temp_audio_directory, exist_ok=True)
626
+ temp_count = 0
627
+
628
+ with open(chapter_path, 'r', encoding='utf-8') as file:
629
+ chapter_text = file.read()
630
+ # Check if the language code is supported
631
+ nltk_language = language_mapping.get(language)
632
+ if nltk_language:
633
+ # If the language is supported, tokenize using sent_tokenize
634
+ sentences = sent_tokenize(chapter_text, language=nltk_language)
635
+ else:
636
+ # If the language is not supported, handle it (e.g., return the text unchanged)
637
+ sentences = [chapter_text] # No tokenization, just wrap the text in a list
638
+ #sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
639
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
640
+ fragments = split_long_sentence(sentence, language=language)
641
+ for fragment in fragments:
642
+ if fragment != "":
643
+ print(f"Generating fragment: {fragment}...")
644
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
645
+ if custom_model:
646
+ # length penalty will not apply for custome models, its just too much of a headache perhaps if someone else can do it for me lol, im just one man :(
647
+ out = model.inference(fragment, language, gpt_cond_latent, speaker_embedding, temperature=temperature, repetition_penalty=repetition_penalty, top_k=top_k, top_p=top_p, speed=speed, enable_text_splitting=enable_text_splitting)
648
+ #out = model.inference(fragment, language, gpt_cond_latent, speaker_embedding, temperature, length_penalty, repetition_penalty, top_k, top_p, speed, enable_text_splitting)
649
+ torchaudio.save(fragment_file_path, torch.tensor(out["wav"]).unsqueeze(0), 24000)
650
+ else:
651
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
652
+ language_code = language if language else default_language_code
653
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code, temperature=temperature, length_penalty=length_penalty, repetition_penalty=repetition_penalty, top_k=top_k, top_p=top_p, speed=speed, enable_text_splitting=enable_text_splitting)
654
+
655
+ temp_count += 1
656
+
657
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
658
+ wipe_folder(temp_audio_directory)
659
+ print(f"Converted chapter {chapter_num} to audio.")
660
+
661
+
662
+
663
+ def convert_chapters_to_audio_standard_model(chapters_dir, output_audio_dir, temperature, length_penalty, repetition_penalty, top_k, top_p, speed, enable_text_splitting, target_voice_path=None, language="en"):
664
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
665
+ tts = TTS(selected_tts_model, progress_bar=False).to(device)
666
+
667
+ if not os.path.exists(output_audio_dir):
668
+ os.makedirs(output_audio_dir)
669
+
670
+ for chapter_file in sorted(os.listdir(chapters_dir)):
671
+ if chapter_file.endswith('.txt'):
672
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
673
+ if match:
674
+ chapter_num = int(match.group(1))
675
+ else:
676
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
677
+ continue
678
+
679
+ chapter_path = os.path.join(chapters_dir, chapter_file)
680
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
681
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
682
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
683
+ os.makedirs(temp_audio_directory, exist_ok=True)
684
+ temp_count = 0
685
+
686
+ with open(chapter_path, 'r', encoding='utf-8') as file:
687
+ chapter_text = file.read()
688
+ # Check if the language code is supported
689
+ nltk_language = language_mapping.get(language)
690
+ if nltk_language:
691
+ # If the language is supported, tokenize using sent_tokenize
692
+ sentences = sent_tokenize(chapter_text, language=nltk_language)
693
+ else:
694
+ # If the language is not supported, handle it (e.g., return the text unchanged)
695
+ sentences = [chapter_text] # No tokenization, just wrap the text in a list
696
+ #sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
697
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
698
+ fragments = split_long_sentence(sentence, language=language)
699
+ for fragment in fragments:
700
+ if fragment != "":
701
+ print(f"Generating fragment: {fragment}...")
702
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
703
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
704
+ tts.tts_to_file(
705
+ text=fragment,
706
+ file_path=fragment_file_path,
707
+ speaker_wav=speaker_wav_path,
708
+ language=language,
709
+ temperature=temperature,
710
+ length_penalty=length_penalty,
711
+ repetition_penalty=repetition_penalty,
712
+ top_k=top_k,
713
+ top_p=top_p,
714
+ speed=speed,
715
+ enable_text_splitting=enable_text_splitting
716
+ )
717
+
718
+ temp_count += 1
719
+
720
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
721
+ wipe_folder(temp_audio_directory)
722
+ print(f"Converted chapter {chapter_num} to audio.")
723
+
724
+
725
+
726
+ # Define the functions to be used in the Gradio interface
727
+ def convert_ebook_to_audio(ebook_file, target_voice_file, language, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file, temperature, length_penalty, repetition_penalty, top_k, top_p, speed, enable_text_splitting, custom_model_url=None, progress=gr.Progress()):
728
+
729
+ ebook_file_path = args.ebook if args.ebook else ebook_file.name
730
+ target_voice = args.voice if args.voice else target_voice_file.name if target_voice_file else None
731
+ custom_model = None
732
+
733
+
734
+ working_files = os.path.join(".", "Working_files", "temp_ebook")
735
+ full_folder_working_files = os.path.join(".", "Working_files")
736
+ chapters_directory = os.path.join(".", "Working_files", "temp_ebook")
737
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
738
+ remove_folder_with_contents(full_folder_working_files)
739
+ remove_folder_with_contents(output_audio_directory)
740
+
741
+ # If running in headless mode, use the language from args
742
+ if args.headless and args.language:
743
+ language = args.language
744
+ else:
745
+ language = language # Gradio dropdown value
746
+
747
+ # If headless is used with the custom model arguments
748
+ if args.use_custom_model and args.custom_model and args.custom_config and args.custom_vocab:
749
+ custom_model = {
750
+ 'model': args.custom_model,
751
+ 'config': args.custom_config,
752
+ 'vocab': args.custom_vocab
753
+ }
754
+
755
+ elif use_custom_model and custom_model_file and custom_config_file and custom_vocab_file:
756
+ custom_model = {
757
+ 'model': custom_model_file.name,
758
+ 'config': custom_config_file.name,
759
+ 'vocab': custom_vocab_file.name
760
+ }
761
+ if (use_custom_model and custom_model_url) or (args.use_custom_model and custom_model_url):
762
+ print(f"Received custom model URL: {custom_model_url}")
763
+ download_dir = os.path.join(".", "Working_files", "custom_model")
764
+ download_and_extract_zip(custom_model_url, download_dir)
765
+
766
+ # Check if vocab.json exists and rename it
767
+ if rename_vocab_file_if_exists(download_dir):
768
+ print("vocab.json file was found and renamed.")
769
+
770
+ custom_model = {
771
+ 'model': os.path.join(download_dir, 'model.pth'),
772
+ 'config': os.path.join(download_dir, 'config.json'),
773
+ 'vocab': os.path.join(download_dir, 'vocab.json_')
774
+ }
775
+
776
+ try:
777
+ progress(0, desc="Starting conversion")
778
+ except Exception as e:
779
+ print(f"Error updating progress: {e}")
780
+
781
+ if not calibre_installed():
782
+ return "Calibre is not installed."
783
+
784
+
785
+ try:
786
+ progress(0.1, desc="Creating chapter-labeled book")
787
+ except Exception as e:
788
+ print(f"Error updating progress: {e}")
789
+
790
+ create_chapter_labeled_book(ebook_file_path)
791
+ audiobook_output_path = os.path.join(".", "Audiobooks")
792
+
793
+ try:
794
+ progress(0.3, desc="Converting chapters to audio")
795
+ except Exception as e:
796
+ print(f"Error updating progress: {e}")
797
+
798
+ if use_custom_model:
799
+ convert_chapters_to_audio_custom_model(chapters_directory, output_audio_directory, temperature, length_penalty, repetition_penalty, top_k, top_p, speed, enable_text_splitting, target_voice, language, custom_model)
800
+ else:
801
+ convert_chapters_to_audio_standard_model(chapters_directory, output_audio_directory, temperature, length_penalty, repetition_penalty, top_k, top_p, speed, enable_text_splitting, target_voice, language)
802
+
803
+ try:
804
+ progress(0.9, desc="Creating M4B from chapters")
805
+ except Exception as e:
806
+ print(f"Error updating progress: {e}")
807
+
808
+ create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
809
+
810
+ # Get the name of the created M4B file
811
+ m4b_filename = os.path.splitext(os.path.basename(ebook_file_path))[0] + '.m4b'
812
+ m4b_filepath = os.path.join(audiobook_output_path, m4b_filename)
813
+
814
+ try:
815
+ progress(1.0, desc="Conversion complete")
816
+ except Exception as e:
817
+ print(f"Error updating progress: {e}")
818
+ print(f"Audiobook created at {m4b_filepath}")
819
+ return f"Audiobook created at {m4b_filepath}", m4b_filepath
820
+
821
+
822
+ def list_audiobook_files(audiobook_folder):
823
+ # List all files in the audiobook folder
824
+ files = []
825
+ for filename in os.listdir(audiobook_folder):
826
+ if filename.endswith('.m4b'): # Adjust the file extension as needed
827
+ files.append(os.path.join(audiobook_folder, filename))
828
+ return files
829
+
830
+ def download_audiobooks():
831
+ audiobook_output_path = os.path.join(".", "Audiobooks")
832
+ return list_audiobook_files(audiobook_output_path)
833
+
834
+
835
+ # Gradio UI setup
836
+ def run_gradio_interface():
837
+ language_options = [
838
+ "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko"
839
+ ]
840
+
841
+ theme = gr.themes.Soft(
842
+ primary_hue="blue",
843
+ secondary_hue="blue",
844
+ neutral_hue="blue",
845
+ text_size=gr.themes.sizes.text_md,
846
+ )
847
+
848
+ # Gradio UI setup
849
+ def run_gradio_interface():
850
+ language_options = [
851
+ "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko"
852
+ ]
853
+
854
+ theme = gr.themes.Soft(
855
+ primary_hue="blue",
856
+ secondary_hue="blue",
857
+ neutral_hue="blue",
858
+ text_size=gr.themes.sizes.text_md,
859
+ )
860
+
861
+ with gr.Blocks(theme=theme) as demo:
862
+ gr.Markdown(
863
+ """
864
+ # eBook to Audiobook Converter
865
+
866
+ Transform your eBooks into immersive audiobooks with optional custom TTS models.
867
+
868
+ This interface is based on [Ebook2AudioBookXTTS](https://github.com/DrewThomasson/ebook2audiobookXTTS).
869
+ """
870
+ )
871
+
872
+ with gr.Tabs(): # Create tabs for better UI organization
873
+ with gr.TabItem("Input Options"):
874
+ with gr.Row():
875
+ with gr.Column(scale=3):
876
+ ebook_file = gr.File(label="eBook File")
877
+ target_voice_file = gr.File(label="Target Voice File (Optional)")
878
+ language = gr.Dropdown(label="Language", choices=language_options, value="en")
879
+
880
+ with gr.Column(scale=3):
881
+ use_custom_model = gr.Checkbox(label="Use Custom Model")
882
+ custom_model_file = gr.File(label="Custom Model File (Optional)", visible=False)
883
+ custom_config_file = gr.File(label="Custom Config File (Optional)", visible=False)
884
+ custom_vocab_file = gr.File(label="Custom Vocab File (Optional)", visible=False)
885
+ custom_model_url = gr.Textbox(label="Custom Model Zip URL (Optional)", visible=False)
886
+
887
+ with gr.TabItem("Audio Generation Preferences"): # New tab for preferences
888
+ gr.Markdown(
889
+ """
890
+ ### Customize Audio Generation Parameters
891
+
892
+ Adjust the settings below to influence how the audio is generated. You can control the creativity, speed, repetition, and more.
893
+ """
894
+ )
895
+ temperature = gr.Slider(
896
+ label="Temperature",
897
+ minimum=0.1,
898
+ maximum=10.0,
899
+ step=0.1,
900
+ value=0.65,
901
+ info="Higher values lead to more creative, unpredictable outputs. Lower values make it more monotone."
902
+ )
903
+ length_penalty = gr.Slider(
904
+ label="Length Penalty",
905
+ minimum=0.5,
906
+ maximum=10.0,
907
+ step=0.1,
908
+ value=1.0,
909
+ info="Penalize longer sequences. Higher values produce shorter outputs. Not applied to custom models."
910
+ )
911
+ repetition_penalty = gr.Slider(
912
+ label="Repetition Penalty",
913
+ minimum=1.0,
914
+ maximum=10.0,
915
+ step=0.1,
916
+ value=2.0,
917
+ info="Penalizes repeated phrases. Higher values reduce repetition."
918
+ )
919
+ top_k = gr.Slider(
920
+ label="Top-k Sampling",
921
+ minimum=10,
922
+ maximum=100,
923
+ step=1,
924
+ value=50,
925
+ info="Lower values restrict outputs to more likely words and increase speed at which audio generates. "
926
+ )
927
+ top_p = gr.Slider(
928
+ label="Top-p Sampling",
929
+ minimum=0.1,
930
+ maximum=1.0,
931
+ step=.01,
932
+ value=0.8,
933
+ info="Controls cumulative probability for word selection. Lower values make the output more predictable and increase speed at which audio generates."
934
+ )
935
+ speed = gr.Slider(
936
+ label="Speed",
937
+ minimum=0.5,
938
+ maximum=3.0,
939
+ step=0.1,
940
+ value=1.0,
941
+ info="Adjusts How fast the narrator will speak."
942
+ )
943
+ enable_text_splitting = gr.Checkbox(
944
+ label="Enable Text Splitting",
945
+ value=False,
946
+ info="Splits long texts into sentences to generate audio in chunks. Useful for very long inputs."
947
+ )
948
+
949
+ convert_btn = gr.Button("Convert to Audiobook", variant="primary")
950
+ output = gr.Textbox(label="Conversion Status")
951
+ audio_player = gr.Audio(label="Audiobook Player", type="filepath")
952
+ download_btn = gr.Button("Download Audiobook Files")
953
+ download_files = gr.File(label="Download Files", interactive=False)
954
+
955
+ convert_btn.click(
956
+ lambda *args: convert_ebook_to_audio(
957
+ *args[:7],
958
+ float(args[7]), # Ensure temperature is float
959
+ float(args[8]), # Ensure length_penalty is float
960
+ float(args[9]), # Ensure repetition_penalty is float
961
+ int(args[10]), # Ensure top_k is int
962
+ float(args[11]), # Ensure top_p is float
963
+ float(args[12]), # Ensure speed is float
964
+ *args[13:]
965
+ ),
966
+ inputs=[
967
+ ebook_file, target_voice_file, language, use_custom_model, custom_model_file, custom_config_file,
968
+ custom_vocab_file, temperature, length_penalty, repetition_penalty,
969
+ top_k, top_p, speed, enable_text_splitting, custom_model_url
970
+ ],
971
+ outputs=[output, audio_player]
972
+ )
973
+
974
+
975
+ use_custom_model.change(
976
+ lambda x: [gr.update(visible=x)] * 4,
977
+ inputs=[use_custom_model],
978
+ outputs=[custom_model_file, custom_config_file, custom_vocab_file, custom_model_url]
979
+ )
980
+
981
+ download_btn.click(
982
+ download_audiobooks,
983
+ outputs=[download_files]
984
+ )
985
+
986
+ # Get the correct local IP or localhost
987
+ hostname = socket.gethostname()
988
+ local_ip = socket.gethostbyname(hostname)
989
+
990
+ # Ensure Gradio runs and prints the correct local IP
991
+ print(f"Running on local URL: http://{local_ip}:7860")
992
+ print(f"Running on local URL: http://localhost:7860")
993
+
994
+ # Launch Gradio app
995
+ demo.launch(server_name="0.0.0.0", server_port=7860, share=args.share)
996
+
997
+
998
+
999
+
1000
+
1001
+ # Check if running in headless mode
1002
+ if args.headless:
1003
+ # If the arg.custom_model_url exists then use it as the custom_model_url lol
1004
+ custom_model_url = args.custom_model_url if args.custom_model_url else None
1005
+
1006
+ if not args.ebook:
1007
+ print("Error: In headless mode, you must specify an ebook file using --ebook.")
1008
+ exit(1)
1009
+
1010
+ ebook_file_path = args.ebook
1011
+ target_voice = args.voice if args.voice else None
1012
+ custom_model = None
1013
+
1014
+ if args.use_custom_model:
1015
+ # Check if custom_model_url is provided
1016
+ if args.custom_model_url:
1017
+ # Download the custom model from the provided URL
1018
+ custom_model_url = args.custom_model_url
1019
+ else:
1020
+ # If no URL is provided, ensure all custom model files are provided
1021
+ if not args.custom_model or not args.custom_config or not args.custom_vocab:
1022
+ print("Error: You must provide either a --custom_model_url or all of the following arguments:")
1023
+ print("--custom_model, --custom_config, and --custom_vocab")
1024
+ exit(1)
1025
+ else:
1026
+ # Assign the custom model files
1027
+ custom_model = {
1028
+ 'model': args.custom_model,
1029
+ 'config': args.custom_config,
1030
+ 'vocab': args.custom_vocab
1031
+ }
1032
+
1033
+
1034
+
1035
+ # Example headless execution
1036
+ convert_ebook_to_audio(ebook_file_path, target_voice, args.language, args.use_custom_model, args.custom_model, args.custom_config, args.custom_vocab, args.temperature, args.length_penalty, args.repetition_penalty, args.top_k, args.top_p, args.speed, args.enable_text_splitting, custom_model_url)
1037
+
1038
+
1039
+ else:
1040
+ # Launch Gradio UI
1041
+ run_gradio_interface()
legacy/v1.0/default_voice.wav ADDED
Binary file (291 kB). View file
 
legacy/v1.0/demo_mini_story_chapters_Drew.epub ADDED
Binary file (415 kB). View file
 
legacy/v1.0/demo_web_gui.gif ADDED

Git LFS Details

  • SHA256: 00f590c76e206a1833778bad3c0ec9e698399825e566d6609ccac9821f5d5f55
  • Pointer size: 132 Bytes
  • Size of remote file: 8.55 MB
legacy/v1.0/legacy/custom_model_ebook2audiobookXTTS.py ADDED
@@ -0,0 +1,484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+
3
+ import os
4
+ import shutil
5
+ import subprocess
6
+ import re
7
+ from pydub import AudioSegment
8
+ import tempfile
9
+ from pydub import AudioSegment
10
+ import os
11
+ import nltk
12
+ from nltk.tokenize import sent_tokenize
13
+ import sys
14
+ import torch
15
+ from TTS.api import TTS
16
+ from TTS.tts.configs.xtts_config import XttsConfig
17
+ from TTS.tts.models.xtts import Xtts
18
+ from tqdm import tqdm
19
+
20
+ nltk.download('punkt') # Make sure to download the necessary models
21
+ def is_folder_empty(folder_path):
22
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
23
+ # List directory contents
24
+ if not os.listdir(folder_path):
25
+ return True # The folder is empty
26
+ else:
27
+ return False # The folder is not empty
28
+ else:
29
+ print(f"The path {folder_path} is not a valid folder.")
30
+ return None # The path is not a valid folder
31
+
32
+ def remove_folder_with_contents(folder_path):
33
+ try:
34
+ shutil.rmtree(folder_path)
35
+ print(f"Successfully removed {folder_path} and all of its contents.")
36
+ except Exception as e:
37
+ print(f"Error removing {folder_path}: {e}")
38
+
39
+
40
+
41
+
42
+ def wipe_folder(folder_path):
43
+ # Check if the folder exists
44
+ if not os.path.exists(folder_path):
45
+ print(f"The folder {folder_path} does not exist.")
46
+ return
47
+
48
+ # Iterate over all the items in the given folder
49
+ for item in os.listdir(folder_path):
50
+ item_path = os.path.join(folder_path, item)
51
+ # If it's a file, remove it and print a message
52
+ if os.path.isfile(item_path):
53
+ os.remove(item_path)
54
+ print(f"Removed file: {item_path}")
55
+ # If it's a directory, remove it recursively and print a message
56
+ elif os.path.isdir(item_path):
57
+ shutil.rmtree(item_path)
58
+ print(f"Removed directory and its contents: {item_path}")
59
+
60
+ print(f"All contents wiped from {folder_path}.")
61
+
62
+
63
+ # Example usage
64
+ # folder_to_wipe = 'path_to_your_folder'
65
+ # wipe_folder(folder_to_wipe)
66
+
67
+
68
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
69
+ # Function to sort chapters based on their numeric order
70
+ def sort_key(chapter_file):
71
+ numbers = re.findall(r'\d+', chapter_file)
72
+ return int(numbers[0]) if numbers else 0
73
+
74
+ # Extract metadata and cover image from the eBook file
75
+ def extract_metadata_and_cover(ebook_path):
76
+ try:
77
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
78
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
79
+ if os.path.exists(cover_path):
80
+ return cover_path
81
+ except Exception as e:
82
+ print(f"Error extracting eBook metadata or cover: {e}")
83
+ return None
84
+ # Combine WAV files into a single file
85
+ def combine_wav_files(chapter_files, output_path):
86
+ # Initialize an empty audio segment
87
+ combined_audio = AudioSegment.empty()
88
+
89
+ # Sequentially append each file to the combined_audio
90
+ for chapter_file in chapter_files:
91
+ audio_segment = AudioSegment.from_wav(chapter_file)
92
+ combined_audio += audio_segment
93
+ # Export the combined audio to the output file path
94
+ combined_audio.export(output_path, format='wav')
95
+ print(f"Combined audio saved to {output_path}")
96
+
97
+ # Function to generate metadata for M4B chapters
98
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
99
+ with open(metadata_file, 'w') as file:
100
+ file.write(';FFMETADATA1\n')
101
+ start_time = 0
102
+ for index, chapter_file in enumerate(chapter_files):
103
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
104
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
105
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
106
+ start_time += duration_ms
107
+
108
+ # Generate the final M4B file using ffmpeg
109
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
110
+ # Ensure the output directory exists
111
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
112
+
113
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
114
+ if cover_image:
115
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
116
+ else:
117
+ ffmpeg_cmd += ['-map', '0:a']
118
+
119
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
120
+ if cover_image:
121
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
122
+ ffmpeg_cmd += [output_m4b]
123
+
124
+ subprocess.run(ffmpeg_cmd, check=True)
125
+
126
+
127
+
128
+ # Main logic
129
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
130
+ temp_dir = tempfile.gettempdir()
131
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
132
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
133
+ cover_image = extract_metadata_and_cover(ebook_file)
134
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
135
+
136
+ combine_wav_files(chapter_files, temp_combined_wav)
137
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
138
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
139
+
140
+ # Cleanup
141
+ if os.path.exists(temp_combined_wav):
142
+ os.remove(temp_combined_wav)
143
+ if os.path.exists(metadata_file):
144
+ os.remove(metadata_file)
145
+ if cover_image and os.path.exists(cover_image):
146
+ os.remove(cover_image)
147
+
148
+ # Example usage
149
+ # create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')
150
+
151
+
152
+
153
+
154
+
155
+
156
+ #this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
157
+ import os
158
+ import subprocess
159
+ import ebooklib
160
+ from ebooklib import epub
161
+ from bs4 import BeautifulSoup
162
+ import re
163
+ import csv
164
+ import nltk
165
+
166
+ # Only run the main script if Value is True
167
+ def create_chapter_labeled_book(ebook_file_path):
168
+ # Function to ensure the existence of a directory
169
+ def ensure_directory(directory_path):
170
+ if not os.path.exists(directory_path):
171
+ os.makedirs(directory_path)
172
+ print(f"Created directory: {directory_path}")
173
+
174
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
175
+
176
+ def convert_to_epub(input_path, output_path):
177
+ # Convert the ebook to EPUB format using Calibre's ebook-convert
178
+ try:
179
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
180
+ except subprocess.CalledProcessError as e:
181
+ print(f"An error occurred while converting the eBook: {e}")
182
+ return False
183
+ return True
184
+
185
+ def save_chapters_as_text(epub_path):
186
+ # Create the directory if it doesn't exist
187
+ directory = os.path.join(".", "Working_files", "temp_ebook")
188
+ ensure_directory(directory)
189
+
190
+ # Open the EPUB file
191
+ book = epub.read_epub(epub_path)
192
+
193
+ previous_chapter_text = ''
194
+ previous_filename = ''
195
+ chapter_counter = 0
196
+
197
+ # Iterate through the items in the EPUB file
198
+ for item in book.get_items():
199
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
200
+ # Use BeautifulSoup to parse HTML content
201
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
202
+ text = soup.get_text()
203
+
204
+ # Check if the text is not empty
205
+ if text.strip():
206
+ if len(text) < 2300 and previous_filename:
207
+ # Append text to the previous chapter if it's short
208
+ with open(previous_filename, 'a', encoding='utf-8') as file:
209
+ file.write('\n' + text)
210
+ else:
211
+ # Create a new chapter file and increment the counter
212
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
213
+ chapter_counter += 1
214
+ with open(previous_filename, 'w', encoding='utf-8') as file:
215
+ file.write(text)
216
+ print(f"Saved chapter: {previous_filename}")
217
+
218
+ # Example usage
219
+ input_ebook = ebook_file_path # Replace with your eBook file path
220
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
221
+
222
+
223
+ if os.path.exists(output_epub):
224
+ os.remove(output_epub)
225
+ print(f"File {output_epub} has been removed.")
226
+ else:
227
+ print(f"The file {output_epub} does not exist.")
228
+
229
+ if convert_to_epub(input_ebook, output_epub):
230
+ save_chapters_as_text(output_epub)
231
+
232
+ # Download the necessary NLTK data (if not already present)
233
+ nltk.download('punkt')
234
+
235
+ def process_chapter_files(folder_path, output_csv):
236
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
237
+ writer = csv.writer(csvfile)
238
+ # Write the header row
239
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
240
+
241
+ # Process each chapter file
242
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
243
+ for filename in chapter_files:
244
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
245
+ chapter_number = int(filename.split('_')[1].split('.')[0])
246
+ file_path = os.path.join(folder_path, filename)
247
+
248
+ try:
249
+ with open(file_path, 'r', encoding='utf-8') as file:
250
+ text = file.read()
251
+ # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
252
+ if text:
253
+ text = "NEWCHAPTERABC" + text
254
+ sentences = nltk.tokenize.sent_tokenize(text)
255
+ for sentence in sentences:
256
+ start_location = text.find(sentence)
257
+ end_location = start_location + len(sentence)
258
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
259
+ except Exception as e:
260
+ print(f"Error processing file {filename}: {e}")
261
+
262
+ # Example usage
263
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
264
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
265
+
266
+ process_chapter_files(folder_path, output_csv)
267
+
268
+ def sort_key(filename):
269
+ """Extract chapter number for sorting."""
270
+ match = re.search(r'chapter_(\d+)\.txt', filename)
271
+ return int(match.group(1)) if match else 0
272
+
273
+ def combine_chapters(input_folder, output_file):
274
+ # Create the output folder if it doesn't exist
275
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
276
+
277
+ # List all txt files and sort them by chapter number
278
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
279
+ sorted_files = sorted(files, key=sort_key)
280
+
281
+ with open(output_file, 'w', encoding='utf-8') as outfile: # Specify UTF-8 encoding here
282
+ for i, filename in enumerate(sorted_files):
283
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile: # And here
284
+ outfile.write(infile.read())
285
+ # Add the marker unless it's the last file
286
+ if i < len(sorted_files) - 1:
287
+ outfile.write("\nNEWCHAPTERABC\n")
288
+
289
+ # Paths
290
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
291
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
292
+
293
+
294
+ # Combine the chapters
295
+ combine_chapters(input_folder, output_file)
296
+
297
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
298
+
299
+
300
+ #create_chapter_labeled_book()
301
+
302
+
303
+
304
+
305
+ import os
306
+ import subprocess
307
+ import sys
308
+ import torchaudio
309
+
310
+ # Check if Calibre's ebook-convert tool is installed
311
+ def calibre_installed():
312
+ try:
313
+ subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
314
+ return True
315
+ except FileNotFoundError:
316
+ print("Calibre is not installed. Please install Calibre for this functionality.")
317
+ return False
318
+
319
+
320
+ import os
321
+ import torch
322
+ from TTS.api import TTS
323
+ from nltk.tokenize import sent_tokenize
324
+ from pydub import AudioSegment
325
+ # Assuming split_long_sentence and wipe_folder are defined elsewhere in your code
326
+
327
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
328
+ default_language_code = "en"
329
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
330
+
331
+ def combine_wav_files(input_directory, output_directory, file_name):
332
+ # Ensure that the output directory exists, create it if necessary
333
+ os.makedirs(output_directory, exist_ok=True)
334
+
335
+ # Specify the output file path
336
+ output_file_path = os.path.join(output_directory, file_name)
337
+
338
+ # Initialize an empty audio segment
339
+ combined_audio = AudioSegment.empty()
340
+
341
+ # Get a list of all .wav files in the specified input directory and sort them
342
+ input_file_paths = sorted(
343
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
344
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
345
+ )
346
+
347
+ # Sequentially append each file to the combined_audio
348
+ for input_file_path in input_file_paths:
349
+ audio_segment = AudioSegment.from_wav(input_file_path)
350
+ combined_audio += audio_segment
351
+
352
+ # Export the combined audio to the output file path
353
+ combined_audio.export(output_file_path, format='wav')
354
+
355
+ print(f"Combined audio saved to {output_file_path}")
356
+
357
+ # Function to split long strings into parts
358
+ def split_long_sentence(sentence, max_length=249, max_pauses=10):
359
+ """
360
+ Splits a sentence into parts based on length or number of pauses without recursion.
361
+
362
+ :param sentence: The sentence to split.
363
+ :param max_length: Maximum allowed length of a sentence.
364
+ :param max_pauses: Maximum allowed number of pauses in a sentence.
365
+ :return: A list of sentence parts that meet the criteria.
366
+ """
367
+ parts = []
368
+ while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
369
+ possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
370
+ if possible_splits:
371
+ # Find the best place to split the sentence, preferring the last possible split to keep parts longer
372
+ split_at = possible_splits[-1] + 1
373
+ else:
374
+ # If no punctuation to split on within max_length, split at max_length
375
+ split_at = max_length
376
+
377
+ # Split the sentence and add the first part to the list
378
+ parts.append(sentence[:split_at].strip())
379
+ sentence = sentence[split_at:].strip()
380
+
381
+ # Add the remaining part of the sentence
382
+ parts.append(sentence)
383
+ return parts
384
+
385
+ """
386
+ if 'tts' not in locals():
387
+ tts = TTS(selected_tts_model, progress_bar=True).to(device)
388
+ """
389
+ from tqdm import tqdm
390
+
391
+ # Convert chapters to audio using XTTS
392
+ def convert_chapters_to_audio(chapters_dir, output_audio_dir, target_voice_path=None, language=None, custom_model=None):
393
+ if custom_model:
394
+ print("Loading custom model...")
395
+ config = XttsConfig()
396
+ config.load_json(custom_model['config'])
397
+ model = Xtts.init_from_config(config)
398
+ model.load_checkpoint(config, checkpoint_path=custom_model['model'], vocab_path=custom_model['vocab'], use_deepspeed=False)
399
+ model.to(device)
400
+ print("Computing speaker latents...")
401
+ gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[target_voice_path])
402
+ else:
403
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
404
+ tts = TTS(selected_tts_model, progress_bar=False).to(device)
405
+
406
+ if not os.path.exists(output_audio_dir):
407
+ os.makedirs(output_audio_dir)
408
+
409
+ for chapter_file in sorted(os.listdir(chapters_dir)):
410
+ if chapter_file.endswith('.txt'):
411
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
412
+ if match:
413
+ chapter_num = int(match.group(1))
414
+ else:
415
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
416
+ continue
417
+
418
+ chapter_path = os.path.join(chapters_dir, chapter_file)
419
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
420
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
421
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
422
+ os.makedirs(temp_audio_directory, exist_ok=True)
423
+ temp_count = 0
424
+
425
+ with open(chapter_path, 'r', encoding='utf-8') as file:
426
+ chapter_text = file.read()
427
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
428
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
429
+ fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
430
+ for fragment in fragments:
431
+ if fragment != "":
432
+ print(f"Generating fragment: {fragment}...")
433
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
434
+ if custom_model:
435
+ out = model.inference(fragment, language, gpt_cond_latent, speaker_embedding, temperature=0.7)
436
+ torchaudio.save(fragment_file_path, torch.tensor(out["wav"]).unsqueeze(0), 24000)
437
+ else:
438
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
439
+ language_code = language if language else default_language_code
440
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
441
+ temp_count += 1
442
+
443
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
444
+ wipe_folder(temp_audio_directory)
445
+ print(f"Converted chapter {chapter_num} to audio.")
446
+
447
+
448
+ # Main execution flow
449
+ if __name__ == "__main__":
450
+ if len(sys.argv) < 2:
451
+ print("Usage: python script.py <ebook_file_path> [target_voice_file_path] [language] [custom_model_path] [custom_config_path] [custom_vocab_path]")
452
+ sys.exit(1)
453
+
454
+ ebook_file_path = sys.argv[1]
455
+ target_voice = sys.argv[2] if len(sys.argv) > 2 else None
456
+ language = sys.argv[3] if len(sys.argv) > 3 else None
457
+
458
+ custom_model = None
459
+ if len(sys.argv) > 6:
460
+ custom_model = {
461
+ 'model': sys.argv[4],
462
+ 'config': sys.argv[5],
463
+ 'vocab': sys.argv[6]
464
+ }
465
+
466
+ if not calibre_installed():
467
+ sys.exit(1)
468
+
469
+ working_files = os.path.join(".", "Working_files", "temp_ebook")
470
+ full_folder_working_files = os.path.join(".", "Working_files")
471
+ chapters_directory = os.path.join(".", "Working_files", "temp_ebook")
472
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
473
+
474
+ print("Wiping and removing Working_files folder...")
475
+ remove_folder_with_contents(full_folder_working_files)
476
+
477
+ print("Wiping and removing chapter_wav_files folder...")
478
+ remove_folder_with_contents(output_audio_directory)
479
+
480
+ create_chapter_labeled_book(ebook_file_path)
481
+ audiobook_output_path = os.path.join(".", "Audiobooks")
482
+ print(f"{chapters_directory}||||{output_audio_directory}|||||{target_voice}")
483
+ convert_chapters_to_audio(chapters_directory, output_audio_directory, target_voice, language, custom_model)
484
+ create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
legacy/v1.0/legacy/custom_model_ebook2audiobookXTTS_gradio.py ADDED
@@ -0,0 +1,609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+
3
+ import os
4
+ import shutil
5
+ import subprocess
6
+ import re
7
+ from pydub import AudioSegment
8
+ import tempfile
9
+ from pydub import AudioSegment
10
+ import os
11
+ import nltk
12
+ from nltk.tokenize import sent_tokenize
13
+ import sys
14
+ import torch
15
+ from TTS.api import TTS
16
+ from TTS.tts.configs.xtts_config import XttsConfig
17
+ from TTS.tts.models.xtts import Xtts
18
+ from tqdm import tqdm
19
+
20
+ nltk.download('punkt') # Make sure to download the necessary models
21
+
22
+ import gradio as gr
23
+ from gradio import Progress
24
+
25
+
26
+ def is_folder_empty(folder_path):
27
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
28
+ # List directory contents
29
+ if not os.listdir(folder_path):
30
+ return True # The folder is empty
31
+ else:
32
+ return False # The folder is not empty
33
+ else:
34
+ print(f"The path {folder_path} is not a valid folder.")
35
+ return None # The path is not a valid folder
36
+
37
+ def remove_folder_with_contents(folder_path):
38
+ try:
39
+ shutil.rmtree(folder_path)
40
+ print(f"Successfully removed {folder_path} and all of its contents.")
41
+ except Exception as e:
42
+ print(f"Error removing {folder_path}: {e}")
43
+
44
+
45
+
46
+
47
+ def wipe_folder(folder_path):
48
+ # Check if the folder exists
49
+ if not os.path.exists(folder_path):
50
+ print(f"The folder {folder_path} does not exist.")
51
+ return
52
+
53
+ # Iterate over all the items in the given folder
54
+ for item in os.listdir(folder_path):
55
+ item_path = os.path.join(folder_path, item)
56
+ # If it's a file, remove it and print a message
57
+ if os.path.isfile(item_path):
58
+ os.remove(item_path)
59
+ print(f"Removed file: {item_path}")
60
+ # If it's a directory, remove it recursively and print a message
61
+ elif os.path.isdir(item_path):
62
+ shutil.rmtree(item_path)
63
+ print(f"Removed directory and its contents: {item_path}")
64
+
65
+ print(f"All contents wiped from {folder_path}.")
66
+
67
+
68
+ # Example usage
69
+ # folder_to_wipe = 'path_to_your_folder'
70
+ # wipe_folder(folder_to_wipe)
71
+
72
+
73
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
74
+ # Function to sort chapters based on their numeric order
75
+ def sort_key(chapter_file):
76
+ numbers = re.findall(r'\d+', chapter_file)
77
+ return int(numbers[0]) if numbers else 0
78
+
79
+ # Extract metadata and cover image from the eBook file
80
+ def extract_metadata_and_cover(ebook_path):
81
+ try:
82
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
83
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
84
+ if os.path.exists(cover_path):
85
+ return cover_path
86
+ except Exception as e:
87
+ print(f"Error extracting eBook metadata or cover: {e}")
88
+ return None
89
+ # Combine WAV files into a single file
90
+ def combine_wav_files(chapter_files, output_path):
91
+ # Initialize an empty audio segment
92
+ combined_audio = AudioSegment.empty()
93
+
94
+ # Sequentially append each file to the combined_audio
95
+ for chapter_file in chapter_files:
96
+ audio_segment = AudioSegment.from_wav(chapter_file)
97
+ combined_audio += audio_segment
98
+ # Export the combined audio to the output file path
99
+ combined_audio.export(output_path, format='wav')
100
+ print(f"Combined audio saved to {output_path}")
101
+
102
+ # Function to generate metadata for M4B chapters
103
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
104
+ with open(metadata_file, 'w') as file:
105
+ file.write(';FFMETADATA1\n')
106
+ start_time = 0
107
+ for index, chapter_file in enumerate(chapter_files):
108
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
109
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
110
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
111
+ start_time += duration_ms
112
+
113
+ # Generate the final M4B file using ffmpeg
114
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
115
+ # Ensure the output directory exists
116
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
117
+
118
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
119
+ if cover_image:
120
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
121
+ else:
122
+ ffmpeg_cmd += ['-map', '0:a']
123
+
124
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
125
+ if cover_image:
126
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
127
+ ffmpeg_cmd += [output_m4b]
128
+
129
+ subprocess.run(ffmpeg_cmd, check=True)
130
+
131
+
132
+
133
+ # Main logic
134
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
135
+ temp_dir = tempfile.gettempdir()
136
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
137
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
138
+ cover_image = extract_metadata_and_cover(ebook_file)
139
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
140
+
141
+ combine_wav_files(chapter_files, temp_combined_wav)
142
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
143
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
144
+
145
+ # Cleanup
146
+ if os.path.exists(temp_combined_wav):
147
+ os.remove(temp_combined_wav)
148
+ if os.path.exists(metadata_file):
149
+ os.remove(metadata_file)
150
+ if cover_image and os.path.exists(cover_image):
151
+ os.remove(cover_image)
152
+
153
+ # Example usage
154
+ # create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')
155
+
156
+
157
+
158
+
159
+
160
+
161
+ #this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
162
+ import os
163
+ import subprocess
164
+ import ebooklib
165
+ from ebooklib import epub
166
+ from bs4 import BeautifulSoup
167
+ import re
168
+ import csv
169
+ import nltk
170
+
171
+ # Only run the main script if Value is True
172
+ def create_chapter_labeled_book(ebook_file_path):
173
+ # Function to ensure the existence of a directory
174
+ def ensure_directory(directory_path):
175
+ if not os.path.exists(directory_path):
176
+ os.makedirs(directory_path)
177
+ print(f"Created directory: {directory_path}")
178
+
179
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
180
+
181
+ def convert_to_epub(input_path, output_path):
182
+ # Convert the ebook to EPUB format using Calibre's ebook-convert
183
+ try:
184
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
185
+ except subprocess.CalledProcessError as e:
186
+ print(f"An error occurred while converting the eBook: {e}")
187
+ return False
188
+ return True
189
+
190
+ def save_chapters_as_text(epub_path):
191
+ # Create the directory if it doesn't exist
192
+ directory = os.path.join(".", "Working_files", "temp_ebook")
193
+ ensure_directory(directory)
194
+
195
+ # Open the EPUB file
196
+ book = epub.read_epub(epub_path)
197
+
198
+ previous_chapter_text = ''
199
+ previous_filename = ''
200
+ chapter_counter = 0
201
+
202
+ # Iterate through the items in the EPUB file
203
+ for item in book.get_items():
204
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
205
+ # Use BeautifulSoup to parse HTML content
206
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
207
+ text = soup.get_text()
208
+
209
+ # Check if the text is not empty
210
+ if text.strip():
211
+ if len(text) < 2300 and previous_filename:
212
+ # Append text to the previous chapter if it's short
213
+ with open(previous_filename, 'a', encoding='utf-8') as file:
214
+ file.write('\n' + text)
215
+ else:
216
+ # Create a new chapter file and increment the counter
217
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
218
+ chapter_counter += 1
219
+ with open(previous_filename, 'w', encoding='utf-8') as file:
220
+ file.write(text)
221
+ print(f"Saved chapter: {previous_filename}")
222
+
223
+ # Example usage
224
+ input_ebook = ebook_file_path # Replace with your eBook file path
225
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
226
+
227
+
228
+ if os.path.exists(output_epub):
229
+ os.remove(output_epub)
230
+ print(f"File {output_epub} has been removed.")
231
+ else:
232
+ print(f"The file {output_epub} does not exist.")
233
+
234
+ if convert_to_epub(input_ebook, output_epub):
235
+ save_chapters_as_text(output_epub)
236
+
237
+ # Download the necessary NLTK data (if not already present)
238
+ nltk.download('punkt')
239
+
240
+ def process_chapter_files(folder_path, output_csv):
241
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
242
+ writer = csv.writer(csvfile)
243
+ # Write the header row
244
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
245
+
246
+ # Process each chapter file
247
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
248
+ for filename in chapter_files:
249
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
250
+ chapter_number = int(filename.split('_')[1].split('.')[0])
251
+ file_path = os.path.join(folder_path, filename)
252
+
253
+ try:
254
+ with open(file_path, 'r', encoding='utf-8') as file:
255
+ text = file.read()
256
+ # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
257
+ if text:
258
+ text = "NEWCHAPTERABC" + text
259
+ sentences = nltk.tokenize.sent_tokenize(text)
260
+ for sentence in sentences:
261
+ start_location = text.find(sentence)
262
+ end_location = start_location + len(sentence)
263
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
264
+ except Exception as e:
265
+ print(f"Error processing file {filename}: {e}")
266
+
267
+ # Example usage
268
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
269
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
270
+
271
+ process_chapter_files(folder_path, output_csv)
272
+
273
+ def sort_key(filename):
274
+ """Extract chapter number for sorting."""
275
+ match = re.search(r'chapter_(\d+)\.txt', filename)
276
+ return int(match.group(1)) if match else 0
277
+
278
+ def combine_chapters(input_folder, output_file):
279
+ # Create the output folder if it doesn't exist
280
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
281
+
282
+ # List all txt files and sort them by chapter number
283
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
284
+ sorted_files = sorted(files, key=sort_key)
285
+
286
+ with open(output_file, 'w', encoding='utf-8') as outfile: # Specify UTF-8 encoding here
287
+ for i, filename in enumerate(sorted_files):
288
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile: # And here
289
+ outfile.write(infile.read())
290
+ # Add the marker unless it's the last file
291
+ if i < len(sorted_files) - 1:
292
+ outfile.write("\nNEWCHAPTERABC\n")
293
+
294
+ # Paths
295
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
296
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
297
+
298
+
299
+ # Combine the chapters
300
+ combine_chapters(input_folder, output_file)
301
+
302
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
303
+
304
+
305
+ #create_chapter_labeled_book()
306
+
307
+
308
+
309
+
310
+ import os
311
+ import subprocess
312
+ import sys
313
+ import torchaudio
314
+
315
+ # Check if Calibre's ebook-convert tool is installed
316
+ def calibre_installed():
317
+ try:
318
+ subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
319
+ return True
320
+ except FileNotFoundError:
321
+ print("Calibre is not installed. Please install Calibre for this functionality.")
322
+ return False
323
+
324
+
325
+ import os
326
+ import torch
327
+ from TTS.api import TTS
328
+ from nltk.tokenize import sent_tokenize
329
+ from pydub import AudioSegment
330
+ # Assuming split_long_sentence and wipe_folder are defined elsewhere in your code
331
+
332
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
333
+ default_language_code = "en"
334
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
335
+
336
+ def combine_wav_files(input_directory, output_directory, file_name):
337
+ # Ensure that the output directory exists, create it if necessary
338
+ os.makedirs(output_directory, exist_ok=True)
339
+
340
+ # Specify the output file path
341
+ output_file_path = os.path.join(output_directory, file_name)
342
+
343
+ # Initialize an empty audio segment
344
+ combined_audio = AudioSegment.empty()
345
+
346
+ # Get a list of all .wav files in the specified input directory and sort them
347
+ input_file_paths = sorted(
348
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
349
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
350
+ )
351
+
352
+ # Sequentially append each file to the combined_audio
353
+ for input_file_path in input_file_paths:
354
+ audio_segment = AudioSegment.from_wav(input_file_path)
355
+ combined_audio += audio_segment
356
+
357
+ # Export the combined audio to the output file path
358
+ combined_audio.export(output_file_path, format='wav')
359
+
360
+ print(f"Combined audio saved to {output_file_path}")
361
+
362
+ # Function to split long strings into parts
363
+ def split_long_sentence(sentence, max_length=249, max_pauses=10):
364
+ """
365
+ Splits a sentence into parts based on length or number of pauses without recursion.
366
+
367
+ :param sentence: The sentence to split.
368
+ :param max_length: Maximum allowed length of a sentence.
369
+ :param max_pauses: Maximum allowed number of pauses in a sentence.
370
+ :return: A list of sentence parts that meet the criteria.
371
+ """
372
+ parts = []
373
+ while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
374
+ possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
375
+ if possible_splits:
376
+ # Find the best place to split the sentence, preferring the last possible split to keep parts longer
377
+ split_at = possible_splits[-1] + 1
378
+ else:
379
+ # If no punctuation to split on within max_length, split at max_length
380
+ split_at = max_length
381
+
382
+ # Split the sentence and add the first part to the list
383
+ parts.append(sentence[:split_at].strip())
384
+ sentence = sentence[split_at:].strip()
385
+
386
+ # Add the remaining part of the sentence
387
+ parts.append(sentence)
388
+ return parts
389
+
390
+ """
391
+ if 'tts' not in locals():
392
+ tts = TTS(selected_tts_model, progress_bar=True).to(device)
393
+ """
394
+ from tqdm import tqdm
395
+
396
+ # Convert chapters to audio using XTTS
397
+
398
+ def convert_chapters_to_audio_custom_model(chapters_dir, output_audio_dir, target_voice_path=None, language=None, custom_model=None):
399
+ if custom_model:
400
+ print("Loading custom model...")
401
+ config = XttsConfig()
402
+ config.load_json(custom_model['config'])
403
+ model = Xtts.init_from_config(config)
404
+ model.load_checkpoint(config, checkpoint_path=custom_model['model'], vocab_path=custom_model['vocab'], use_deepspeed=False)
405
+ model.to(device)
406
+ print("Computing speaker latents...")
407
+ gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[target_voice_path])
408
+ else:
409
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
410
+ tts = TTS(selected_tts_model, progress_bar=False).to(device)
411
+
412
+ if not os.path.exists(output_audio_dir):
413
+ os.makedirs(output_audio_dir)
414
+
415
+ for chapter_file in sorted(os.listdir(chapters_dir)):
416
+ if chapter_file.endswith('.txt'):
417
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
418
+ if match:
419
+ chapter_num = int(match.group(1))
420
+ else:
421
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
422
+ continue
423
+
424
+ chapter_path = os.path.join(chapters_dir, chapter_file)
425
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
426
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
427
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
428
+ os.makedirs(temp_audio_directory, exist_ok=True)
429
+ temp_count = 0
430
+
431
+ with open(chapter_path, 'r', encoding='utf-8') as file:
432
+ chapter_text = file.read()
433
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
434
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
435
+ fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
436
+ for fragment in fragments:
437
+ if fragment != "":
438
+ print(f"Generating fragment: {fragment}...")
439
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
440
+ if custom_model:
441
+ out = model.inference(fragment, language, gpt_cond_latent, speaker_embedding, temperature=0.7)
442
+ torchaudio.save(fragment_file_path, torch.tensor(out["wav"]).unsqueeze(0), 24000)
443
+ else:
444
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
445
+ language_code = language if language else default_language_code
446
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
447
+ temp_count += 1
448
+
449
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
450
+ wipe_folder(temp_audio_directory)
451
+ print(f"Converted chapter {chapter_num} to audio.")
452
+
453
+
454
+
455
+ def convert_chapters_to_audio_standard_model(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
456
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
457
+ tts = TTS(selected_tts_model, progress_bar=False).to(device)
458
+
459
+ if not os.path.exists(output_audio_dir):
460
+ os.makedirs(output_audio_dir)
461
+
462
+ for chapter_file in sorted(os.listdir(chapters_dir)):
463
+ if chapter_file.endswith('.txt'):
464
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
465
+ if match:
466
+ chapter_num = int(match.group(1))
467
+ else:
468
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
469
+ continue
470
+
471
+ chapter_path = os.path.join(chapters_dir, chapter_file)
472
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
473
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
474
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
475
+ os.makedirs(temp_audio_directory, exist_ok=True)
476
+ temp_count = 0
477
+
478
+ with open(chapter_path, 'r', encoding='utf-8') as file:
479
+ chapter_text = file.read()
480
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
481
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
482
+ fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
483
+ for fragment in fragments:
484
+ if fragment != "":
485
+ print(f"Generating fragment: {fragment}...")
486
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
487
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
488
+ language_code = language if language else default_language_code
489
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
490
+ temp_count += 1
491
+
492
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
493
+ wipe_folder(temp_audio_directory)
494
+ print(f"Converted chapter {chapter_num} to audio.")
495
+
496
+
497
+
498
+ # Define the functions to be used in the Gradio interface
499
+ def convert_ebook_to_audio(ebook_file, target_voice_file, language, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file, progress=gr.Progress()):
500
+ ebook_file_path = ebook_file.name
501
+ target_voice = target_voice_file.name if target_voice_file else None
502
+ custom_model = None
503
+ if use_custom_model and custom_model_file and custom_config_file and custom_vocab_file:
504
+ custom_model = {
505
+ 'model': custom_model_file.name,
506
+ 'config': custom_config_file.name,
507
+ 'vocab': custom_vocab_file.name
508
+ }
509
+
510
+ try:
511
+ progress(0, desc="Starting conversion")
512
+ except Exception as e:
513
+ print(f"Error updating progress: {e}")
514
+
515
+ if not calibre_installed():
516
+ return "Calibre is not installed."
517
+
518
+ working_files = os.path.join(".", "Working_files", "temp_ebook")
519
+ full_folder_working_files = os.path.join(".", "Working_files")
520
+ chapters_directory = os.path.join(".", "Working_files", "temp_ebook")
521
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
522
+ remove_folder_with_contents(full_folder_working_files)
523
+ remove_folder_with_contents(output_audio_directory)
524
+
525
+ try:
526
+ progress(0.1, desc="Creating chapter-labeled book")
527
+ except Exception as e:
528
+ print(f"Error updating progress: {e}")
529
+
530
+ create_chapter_labeled_book(ebook_file_path)
531
+ audiobook_output_path = os.path.join(".", "Audiobooks")
532
+
533
+ try:
534
+ progress(0.3, desc="Converting chapters to audio")
535
+ except Exception as e:
536
+ print(f"Error updating progress: {e}")
537
+
538
+ if use_custom_model:
539
+ convert_chapters_to_audio_custom_model(chapters_directory, output_audio_directory, target_voice, language, custom_model)
540
+ else:
541
+ convert_chapters_to_audio_standard_model(chapters_directory, output_audio_directory, target_voice, language)
542
+
543
+ try:
544
+ progress(0.9, desc="Creating M4B from chapters")
545
+ except Exception as e:
546
+ print(f"Error updating progress: {e}")
547
+
548
+ create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
549
+
550
+ # Get the name of the created M4B file
551
+ m4b_filename = os.path.splitext(os.path.basename(ebook_file_path))[0] + '.m4b'
552
+ m4b_filepath = os.path.join(audiobook_output_path, m4b_filename)
553
+
554
+ try:
555
+ progress(1.0, desc="Conversion complete")
556
+ except Exception as e:
557
+ print(f"Error updating progress: {e}")
558
+
559
+ return f"Audiobook created at {m4b_filepath}", m4b_filepath
560
+
561
+ language_options = [
562
+ "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko"
563
+ ]
564
+
565
+ theme = gr.themes.Soft(
566
+ primary_hue="blue",
567
+ secondary_hue="blue",
568
+ neutral_hue="blue",
569
+ text_size=gr.themes.sizes.text_md,
570
+ )
571
+
572
+ with gr.Blocks(theme=theme) as demo:
573
+ gr.Markdown(
574
+ """
575
+ # eBook to Audiobook Converter
576
+
577
+ Transform your eBooks into immersive audiobooks with optional custom TTS models.
578
+ """
579
+ )
580
+
581
+ with gr.Row():
582
+ with gr.Column(scale=3):
583
+ ebook_file = gr.File(label="eBook File")
584
+ target_voice_file = gr.File(label="Target Voice File (Optional)")
585
+ language = gr.Dropdown(label="Language", choices=language_options, value="en")
586
+
587
+ with gr.Column(scale=3):
588
+ use_custom_model = gr.Checkbox(label="Use Custom Model")
589
+ custom_model_file = gr.File(label="Custom Model File (Optional)", visible=False)
590
+ custom_config_file = gr.File(label="Custom Config File (Optional)", visible=False)
591
+ custom_vocab_file = gr.File(label="Custom Vocab File (Optional)", visible=False)
592
+
593
+ convert_btn = gr.Button("Convert to Audiobook", variant="primary")
594
+ output = gr.Textbox(label="Conversion Status")
595
+ audio_player = gr.Audio(label="Audiobook Player", type="filepath")
596
+
597
+ convert_btn.click(
598
+ convert_ebook_to_audio,
599
+ inputs=[ebook_file, target_voice_file, language, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file],
600
+ outputs=[output, audio_player]
601
+ )
602
+
603
+ use_custom_model.change(
604
+ lambda x: [gr.update(visible=x)] * 3,
605
+ inputs=[use_custom_model],
606
+ outputs=[custom_model_file, custom_config_file, custom_vocab_file]
607
+ )
608
+
609
+ demo.launch(share=False)
legacy/v1.0/legacy/custom_model_ebook2audiobookXTTS_with_link_gradio.py ADDED
@@ -0,0 +1,700 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+
3
+ import os
4
+ import shutil
5
+ import subprocess
6
+ import re
7
+ from pydub import AudioSegment
8
+ import tempfile
9
+ from pydub import AudioSegment
10
+ import os
11
+ import nltk
12
+ from nltk.tokenize import sent_tokenize
13
+ import sys
14
+ import torch
15
+ from TTS.api import TTS
16
+ from TTS.tts.configs.xtts_config import XttsConfig
17
+ from TTS.tts.models.xtts import Xtts
18
+ from tqdm import tqdm
19
+ import gradio as gr
20
+ from gradio import Progress
21
+ import urllib.request
22
+ import zipfile
23
+
24
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
25
+ print(f"Device selected is: {device}")
26
+
27
+ nltk.download('punkt') # Make sure to download the necessary models
28
+
29
+
30
+ def download_and_extract_zip(url, extract_to='.'):
31
+ try:
32
+ # Ensure the directory exists
33
+ os.makedirs(extract_to, exist_ok=True)
34
+
35
+ zip_path = os.path.join(extract_to, 'model.zip')
36
+
37
+ # Download with progress bar
38
+ with tqdm(unit='B', unit_scale=True, miniters=1, desc="Downloading Model") as t:
39
+ def reporthook(blocknum, blocksize, totalsize):
40
+ t.total = totalsize
41
+ t.update(blocknum * blocksize - t.n)
42
+
43
+ urllib.request.urlretrieve(url, zip_path, reporthook=reporthook)
44
+ print(f"Downloaded zip file to {zip_path}")
45
+
46
+ # Unzipping with progress bar
47
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
48
+ files = zip_ref.namelist()
49
+ with tqdm(total=len(files), unit="file", desc="Extracting Files") as t:
50
+ for file in files:
51
+ if not file.endswith('/'): # Skip directories
52
+ # Extract the file to the temporary directory
53
+ extracted_path = zip_ref.extract(file, extract_to)
54
+ # Move the file to the base directory
55
+ base_file_path = os.path.join(extract_to, os.path.basename(file))
56
+ os.rename(extracted_path, base_file_path)
57
+ t.update(1)
58
+
59
+ # Cleanup: Remove the ZIP file and any empty folders
60
+ os.remove(zip_path)
61
+ for root, dirs, files in os.walk(extract_to, topdown=False):
62
+ for name in dirs:
63
+ os.rmdir(os.path.join(root, name))
64
+ print(f"Extracted files to {extract_to}")
65
+
66
+ # Check if all required files are present
67
+ required_files = ['model.pth', 'config.json', 'vocab.json_']
68
+ missing_files = [file for file in required_files if not os.path.exists(os.path.join(extract_to, file))]
69
+
70
+ if not missing_files:
71
+ print("All required files (model.pth, config.json, vocab.json_) found.")
72
+ else:
73
+ print(f"Missing files: {', '.join(missing_files)}")
74
+
75
+ except Exception as e:
76
+ print(f"Failed to download or extract zip file: {e}")
77
+
78
+
79
+
80
+ def is_folder_empty(folder_path):
81
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
82
+ # List directory contents
83
+ if not os.listdir(folder_path):
84
+ return True # The folder is empty
85
+ else:
86
+ return False # The folder is not empty
87
+ else:
88
+ print(f"The path {folder_path} is not a valid folder.")
89
+ return None # The path is not a valid folder
90
+
91
+ def remove_folder_with_contents(folder_path):
92
+ try:
93
+ shutil.rmtree(folder_path)
94
+ print(f"Successfully removed {folder_path} and all of its contents.")
95
+ except Exception as e:
96
+ print(f"Error removing {folder_path}: {e}")
97
+
98
+
99
+
100
+
101
+ def wipe_folder(folder_path):
102
+ # Check if the folder exists
103
+ if not os.path.exists(folder_path):
104
+ print(f"The folder {folder_path} does not exist.")
105
+ return
106
+
107
+ # Iterate over all the items in the given folder
108
+ for item in os.listdir(folder_path):
109
+ item_path = os.path.join(folder_path, item)
110
+ # If it's a file, remove it and print a message
111
+ if os.path.isfile(item_path):
112
+ os.remove(item_path)
113
+ print(f"Removed file: {item_path}")
114
+ # If it's a directory, remove it recursively and print a message
115
+ elif os.path.isdir(item_path):
116
+ shutil.rmtree(item_path)
117
+ print(f"Removed directory and its contents: {item_path}")
118
+
119
+ print(f"All contents wiped from {folder_path}.")
120
+
121
+
122
+ # Example usage
123
+ # folder_to_wipe = 'path_to_your_folder'
124
+ # wipe_folder(folder_to_wipe)
125
+
126
+
127
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
128
+ # Function to sort chapters based on their numeric order
129
+ def sort_key(chapter_file):
130
+ numbers = re.findall(r'\d+', chapter_file)
131
+ return int(numbers[0]) if numbers else 0
132
+
133
+ # Extract metadata and cover image from the eBook file
134
+ def extract_metadata_and_cover(ebook_path):
135
+ try:
136
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
137
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
138
+ if os.path.exists(cover_path):
139
+ return cover_path
140
+ except Exception as e:
141
+ print(f"Error extracting eBook metadata or cover: {e}")
142
+ return None
143
+ # Combine WAV files into a single file
144
+ def combine_wav_files(chapter_files, output_path):
145
+ # Initialize an empty audio segment
146
+ combined_audio = AudioSegment.empty()
147
+
148
+ # Sequentially append each file to the combined_audio
149
+ for chapter_file in chapter_files:
150
+ audio_segment = AudioSegment.from_wav(chapter_file)
151
+ combined_audio += audio_segment
152
+ # Export the combined audio to the output file path
153
+ combined_audio.export(output_path, format='wav')
154
+ print(f"Combined audio saved to {output_path}")
155
+
156
+ # Function to generate metadata for M4B chapters
157
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
158
+ with open(metadata_file, 'w') as file:
159
+ file.write(';FFMETADATA1\n')
160
+ start_time = 0
161
+ for index, chapter_file in enumerate(chapter_files):
162
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
163
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
164
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
165
+ start_time += duration_ms
166
+
167
+ # Generate the final M4B file using ffmpeg
168
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
169
+ # Ensure the output directory exists
170
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
171
+
172
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
173
+ if cover_image:
174
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
175
+ else:
176
+ ffmpeg_cmd += ['-map', '0:a']
177
+
178
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
179
+ if cover_image:
180
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
181
+ ffmpeg_cmd += [output_m4b]
182
+
183
+ subprocess.run(ffmpeg_cmd, check=True)
184
+
185
+
186
+
187
+ # Main logic
188
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
189
+ temp_dir = tempfile.gettempdir()
190
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
191
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
192
+ cover_image = extract_metadata_and_cover(ebook_file)
193
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
194
+
195
+ combine_wav_files(chapter_files, temp_combined_wav)
196
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
197
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
198
+
199
+ # Cleanup
200
+ if os.path.exists(temp_combined_wav):
201
+ os.remove(temp_combined_wav)
202
+ if os.path.exists(metadata_file):
203
+ os.remove(metadata_file)
204
+ if cover_image and os.path.exists(cover_image):
205
+ os.remove(cover_image)
206
+
207
+ # Example usage
208
+ # create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')
209
+
210
+
211
+
212
+
213
+
214
+
215
+ #this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
216
+ import os
217
+ import subprocess
218
+ import ebooklib
219
+ from ebooklib import epub
220
+ from bs4 import BeautifulSoup
221
+ import re
222
+ import csv
223
+ import nltk
224
+
225
+ # Only run the main script if Value is True
226
+ def create_chapter_labeled_book(ebook_file_path):
227
+ # Function to ensure the existence of a directory
228
+ def ensure_directory(directory_path):
229
+ if not os.path.exists(directory_path):
230
+ os.makedirs(directory_path)
231
+ print(f"Created directory: {directory_path}")
232
+
233
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
234
+
235
+ def convert_to_epub(input_path, output_path):
236
+ # Convert the ebook to EPUB format using Calibre's ebook-convert
237
+ try:
238
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
239
+ except subprocess.CalledProcessError as e:
240
+ print(f"An error occurred while converting the eBook: {e}")
241
+ return False
242
+ return True
243
+
244
+ def save_chapters_as_text(epub_path):
245
+ # Create the directory if it doesn't exist
246
+ directory = os.path.join(".", "Working_files", "temp_ebook")
247
+ ensure_directory(directory)
248
+
249
+ # Open the EPUB file
250
+ book = epub.read_epub(epub_path)
251
+
252
+ previous_chapter_text = ''
253
+ previous_filename = ''
254
+ chapter_counter = 0
255
+
256
+ # Iterate through the items in the EPUB file
257
+ for item in book.get_items():
258
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
259
+ # Use BeautifulSoup to parse HTML content
260
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
261
+ text = soup.get_text()
262
+
263
+ # Check if the text is not empty
264
+ if text.strip():
265
+ if len(text) < 2300 and previous_filename:
266
+ # Append text to the previous chapter if it's short
267
+ with open(previous_filename, 'a', encoding='utf-8') as file:
268
+ file.write('\n' + text)
269
+ else:
270
+ # Create a new chapter file and increment the counter
271
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
272
+ chapter_counter += 1
273
+ with open(previous_filename, 'w', encoding='utf-8') as file:
274
+ file.write(text)
275
+ print(f"Saved chapter: {previous_filename}")
276
+
277
+ # Example usage
278
+ input_ebook = ebook_file_path # Replace with your eBook file path
279
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
280
+
281
+
282
+ if os.path.exists(output_epub):
283
+ os.remove(output_epub)
284
+ print(f"File {output_epub} has been removed.")
285
+ else:
286
+ print(f"The file {output_epub} does not exist.")
287
+
288
+ if convert_to_epub(input_ebook, output_epub):
289
+ save_chapters_as_text(output_epub)
290
+
291
+ # Download the necessary NLTK data (if not already present)
292
+ nltk.download('punkt')
293
+
294
+ def process_chapter_files(folder_path, output_csv):
295
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
296
+ writer = csv.writer(csvfile)
297
+ # Write the header row
298
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
299
+
300
+ # Process each chapter file
301
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
302
+ for filename in chapter_files:
303
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
304
+ chapter_number = int(filename.split('_')[1].split('.')[0])
305
+ file_path = os.path.join(folder_path, filename)
306
+
307
+ try:
308
+ with open(file_path, 'r', encoding='utf-8') as file:
309
+ text = file.read()
310
+ # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
311
+ if text:
312
+ text = "NEWCHAPTERABC" + text
313
+ sentences = nltk.tokenize.sent_tokenize(text)
314
+ for sentence in sentences:
315
+ start_location = text.find(sentence)
316
+ end_location = start_location + len(sentence)
317
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
318
+ except Exception as e:
319
+ print(f"Error processing file {filename}: {e}")
320
+
321
+ # Example usage
322
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
323
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
324
+
325
+ process_chapter_files(folder_path, output_csv)
326
+
327
+ def sort_key(filename):
328
+ """Extract chapter number for sorting."""
329
+ match = re.search(r'chapter_(\d+)\.txt', filename)
330
+ return int(match.group(1)) if match else 0
331
+
332
+ def combine_chapters(input_folder, output_file):
333
+ # Create the output folder if it doesn't exist
334
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
335
+
336
+ # List all txt files and sort them by chapter number
337
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
338
+ sorted_files = sorted(files, key=sort_key)
339
+
340
+ with open(output_file, 'w', encoding='utf-8') as outfile: # Specify UTF-8 encoding here
341
+ for i, filename in enumerate(sorted_files):
342
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile: # And here
343
+ outfile.write(infile.read())
344
+ # Add the marker unless it's the last file
345
+ if i < len(sorted_files) - 1:
346
+ outfile.write("\nNEWCHAPTERABC\n")
347
+
348
+ # Paths
349
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
350
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
351
+
352
+
353
+ # Combine the chapters
354
+ combine_chapters(input_folder, output_file)
355
+
356
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
357
+
358
+
359
+ #create_chapter_labeled_book()
360
+
361
+
362
+
363
+
364
+ import os
365
+ import subprocess
366
+ import sys
367
+ import torchaudio
368
+
369
+ # Check if Calibre's ebook-convert tool is installed
370
+ def calibre_installed():
371
+ try:
372
+ subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
373
+ return True
374
+ except FileNotFoundError:
375
+ print("Calibre is not installed. Please install Calibre for this functionality.")
376
+ return False
377
+
378
+
379
+ import os
380
+ import torch
381
+ from TTS.api import TTS
382
+ from nltk.tokenize import sent_tokenize
383
+ from pydub import AudioSegment
384
+ # Assuming split_long_sentence and wipe_folder are defined elsewhere in your code
385
+
386
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
387
+ default_language_code = "en"
388
+ def combine_wav_files(input_directory, output_directory, file_name):
389
+ # Ensure that the output directory exists, create it if necessary
390
+ os.makedirs(output_directory, exist_ok=True)
391
+
392
+ # Specify the output file path
393
+ output_file_path = os.path.join(output_directory, file_name)
394
+
395
+ # Initialize an empty audio segment
396
+ combined_audio = AudioSegment.empty()
397
+
398
+ # Get a list of all .wav files in the specified input directory and sort them
399
+ input_file_paths = sorted(
400
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
401
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
402
+ )
403
+
404
+ # Sequentially append each file to the combined_audio
405
+ for input_file_path in input_file_paths:
406
+ audio_segment = AudioSegment.from_wav(input_file_path)
407
+ combined_audio += audio_segment
408
+
409
+ # Export the combined audio to the output file path
410
+ combined_audio.export(output_file_path, format='wav')
411
+
412
+ print(f"Combined audio saved to {output_file_path}")
413
+
414
+ # Function to split long strings into parts
415
+ def split_long_sentence(sentence, max_length=249, max_pauses=10):
416
+ """
417
+ Splits a sentence into parts based on length or number of pauses without recursion.
418
+
419
+ :param sentence: The sentence to split.
420
+ :param max_length: Maximum allowed length of a sentence.
421
+ :param max_pauses: Maximum allowed number of pauses in a sentence.
422
+ :return: A list of sentence parts that meet the criteria.
423
+ """
424
+ parts = []
425
+ while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
426
+ possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
427
+ if possible_splits:
428
+ # Find the best place to split the sentence, preferring the last possible split to keep parts longer
429
+ split_at = possible_splits[-1] + 1
430
+ else:
431
+ # If no punctuation to split on within max_length, split at max_length
432
+ split_at = max_length
433
+
434
+ # Split the sentence and add the first part to the list
435
+ parts.append(sentence[:split_at].strip())
436
+ sentence = sentence[split_at:].strip()
437
+
438
+ # Add the remaining part of the sentence
439
+ parts.append(sentence)
440
+ return parts
441
+
442
+ """
443
+ if 'tts' not in locals():
444
+ tts = TTS(selected_tts_model, progress_bar=True).to(device)
445
+ """
446
+ from tqdm import tqdm
447
+
448
+ # Convert chapters to audio using XTTS
449
+
450
+ def convert_chapters_to_audio_custom_model(chapters_dir, output_audio_dir, target_voice_path=None, language=None, custom_model=None):
451
+
452
+ if target_voice_path==None:
453
+ target_voice_path = default_target_voice_path
454
+
455
+ if custom_model:
456
+ print("Loading custom model...")
457
+ config = XttsConfig()
458
+ config.load_json(custom_model['config'])
459
+ model = Xtts.init_from_config(config)
460
+ model.load_checkpoint(config, checkpoint_path=custom_model['model'], vocab_path=custom_model['vocab'], use_deepspeed=False)
461
+ model.to(device)
462
+ print("Computing speaker latents...")
463
+ gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[target_voice_path])
464
+ else:
465
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
466
+ tts = TTS(selected_tts_model, progress_bar=False).to(device)
467
+
468
+ if not os.path.exists(output_audio_dir):
469
+ os.makedirs(output_audio_dir)
470
+
471
+ for chapter_file in sorted(os.listdir(chapters_dir)):
472
+ if chapter_file.endswith('.txt'):
473
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
474
+ if match:
475
+ chapter_num = int(match.group(1))
476
+ else:
477
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
478
+ continue
479
+
480
+ chapter_path = os.path.join(chapters_dir, chapter_file)
481
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
482
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
483
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
484
+ os.makedirs(temp_audio_directory, exist_ok=True)
485
+ temp_count = 0
486
+
487
+ with open(chapter_path, 'r', encoding='utf-8') as file:
488
+ chapter_text = file.read()
489
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
490
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
491
+ fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
492
+ for fragment in fragments:
493
+ if fragment != "":
494
+ print(f"Generating fragment: {fragment}...")
495
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
496
+ if custom_model:
497
+ out = model.inference(fragment, language, gpt_cond_latent, speaker_embedding, temperature=0.7)
498
+ torchaudio.save(fragment_file_path, torch.tensor(out["wav"]).unsqueeze(0), 24000)
499
+ else:
500
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
501
+ language_code = language if language else default_language_code
502
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
503
+ temp_count += 1
504
+
505
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
506
+ wipe_folder(temp_audio_directory)
507
+ print(f"Converted chapter {chapter_num} to audio.")
508
+
509
+
510
+
511
+ def convert_chapters_to_audio_standard_model(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
512
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
513
+ tts = TTS(selected_tts_model, progress_bar=False).to(device)
514
+
515
+ if not os.path.exists(output_audio_dir):
516
+ os.makedirs(output_audio_dir)
517
+
518
+ for chapter_file in sorted(os.listdir(chapters_dir)):
519
+ if chapter_file.endswith('.txt'):
520
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
521
+ if match:
522
+ chapter_num = int(match.group(1))
523
+ else:
524
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
525
+ continue
526
+
527
+ chapter_path = os.path.join(chapters_dir, chapter_file)
528
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
529
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
530
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
531
+ os.makedirs(temp_audio_directory, exist_ok=True)
532
+ temp_count = 0
533
+
534
+ with open(chapter_path, 'r', encoding='utf-8') as file:
535
+ chapter_text = file.read()
536
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
537
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
538
+ fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
539
+ for fragment in fragments:
540
+ if fragment != "":
541
+ print(f"Generating fragment: {fragment}...")
542
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
543
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
544
+ language_code = language if language else default_language_code
545
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
546
+ temp_count += 1
547
+
548
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
549
+ wipe_folder(temp_audio_directory)
550
+ print(f"Converted chapter {chapter_num} to audio.")
551
+
552
+
553
+
554
+ # Define the functions to be used in the Gradio interface
555
+ def convert_ebook_to_audio(ebook_file, target_voice_file, language, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file, custom_model_url=None, progress=gr.Progress()):
556
+ ebook_file_path = ebook_file.name
557
+ target_voice = target_voice_file.name if target_voice_file else None
558
+ custom_model = None
559
+
560
+
561
+ working_files = os.path.join(".", "Working_files", "temp_ebook")
562
+ full_folder_working_files = os.path.join(".", "Working_files")
563
+ chapters_directory = os.path.join(".", "Working_files", "temp_ebook")
564
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
565
+ remove_folder_with_contents(full_folder_working_files)
566
+ remove_folder_with_contents(output_audio_directory)
567
+
568
+ if use_custom_model and custom_model_file and custom_config_file and custom_vocab_file:
569
+ custom_model = {
570
+ 'model': custom_model_file.name,
571
+ 'config': custom_config_file.name,
572
+ 'vocab': custom_vocab_file.name
573
+ }
574
+ if use_custom_model and custom_model_url:
575
+ print(f"Received custom model URL: {custom_model_url}")
576
+ download_dir = os.path.join(".", "Working_files", "custom_model")
577
+ download_and_extract_zip(custom_model_url, download_dir)
578
+ custom_model = {
579
+ 'model': os.path.join(download_dir, 'model.pth'),
580
+ 'config': os.path.join(download_dir, 'config.json'),
581
+ 'vocab': os.path.join(download_dir, 'vocab.json_')
582
+ }
583
+
584
+ try:
585
+ progress(0, desc="Starting conversion")
586
+ except Exception as e:
587
+ print(f"Error updating progress: {e}")
588
+
589
+ if not calibre_installed():
590
+ return "Calibre is not installed."
591
+
592
+
593
+ try:
594
+ progress(0.1, desc="Creating chapter-labeled book")
595
+ except Exception as e:
596
+ print(f"Error updating progress: {e}")
597
+
598
+ create_chapter_labeled_book(ebook_file_path)
599
+ audiobook_output_path = os.path.join(".", "Audiobooks")
600
+
601
+ try:
602
+ progress(0.3, desc="Converting chapters to audio")
603
+ except Exception as e:
604
+ print(f"Error updating progress: {e}")
605
+
606
+ if use_custom_model:
607
+ convert_chapters_to_audio_custom_model(chapters_directory, output_audio_directory, target_voice, language, custom_model)
608
+ else:
609
+ convert_chapters_to_audio_standard_model(chapters_directory, output_audio_directory, target_voice, language)
610
+
611
+ try:
612
+ progress(0.9, desc="Creating M4B from chapters")
613
+ except Exception as e:
614
+ print(f"Error updating progress: {e}")
615
+
616
+ create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
617
+
618
+ # Get the name of the created M4B file
619
+ m4b_filename = os.path.splitext(os.path.basename(ebook_file_path))[0] + '.m4b'
620
+ m4b_filepath = os.path.join(audiobook_output_path, m4b_filename)
621
+
622
+ try:
623
+ progress(1.0, desc="Conversion complete")
624
+ except Exception as e:
625
+ print(f"Error updating progress: {e}")
626
+ print(f"Audiobook created at {m4b_filepath}")
627
+ return f"Audiobook created at {m4b_filepath}", m4b_filepath
628
+
629
+
630
+ def list_audiobook_files(audiobook_folder):
631
+ # List all files in the audiobook folder
632
+ files = []
633
+ for filename in os.listdir(audiobook_folder):
634
+ if filename.endswith('.m4b'): # Adjust the file extension as needed
635
+ files.append(os.path.join(audiobook_folder, filename))
636
+ return files
637
+
638
+ def download_audiobooks():
639
+ audiobook_output_path = os.path.join(".", "Audiobooks")
640
+ return list_audiobook_files(audiobook_output_path)
641
+
642
+
643
+ language_options = [
644
+ "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko"
645
+ ]
646
+
647
+ theme = gr.themes.Soft(
648
+ primary_hue="blue",
649
+ secondary_hue="blue",
650
+ neutral_hue="blue",
651
+ text_size=gr.themes.sizes.text_md,
652
+ )
653
+
654
+ # Gradio UI setup
655
+ with gr.Blocks(theme=theme) as demo:
656
+ gr.Markdown(
657
+ """
658
+ # eBook to Audiobook Converter
659
+
660
+ Transform your eBooks into immersive audiobooks with optional custom TTS models.
661
+ """
662
+ )
663
+
664
+ with gr.Row():
665
+ with gr.Column(scale=3):
666
+ ebook_file = gr.File(label="eBook File")
667
+ target_voice_file = gr.File(label="Target Voice File (Optional)")
668
+ language = gr.Dropdown(label="Language", choices=language_options, value="en")
669
+
670
+ with gr.Column(scale=3):
671
+ use_custom_model = gr.Checkbox(label="Use Custom Model")
672
+ custom_model_file = gr.File(label="Custom Model File (Optional)", visible=False)
673
+ custom_config_file = gr.File(label="Custom Config File (Optional)", visible=False)
674
+ custom_vocab_file = gr.File(label="Custom Vocab File (Optional)", visible=False)
675
+ custom_model_url = gr.Textbox(label="Custom Model Zip URL (Optional)", visible=False)
676
+
677
+ convert_btn = gr.Button("Convert to Audiobook", variant="primary")
678
+ output = gr.Textbox(label="Conversion Status")
679
+ audio_player = gr.Audio(label="Audiobook Player", type="filepath")
680
+ download_btn = gr.Button("Download Audiobook Files")
681
+ download_files = gr.File(label="Download Files", interactive=False)
682
+
683
+ convert_btn.click(
684
+ convert_ebook_to_audio,
685
+ inputs=[ebook_file, target_voice_file, language, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file, custom_model_url],
686
+ outputs=[output, audio_player]
687
+ )
688
+
689
+ use_custom_model.change(
690
+ lambda x: [gr.update(visible=x)] * 4,
691
+ inputs=[use_custom_model],
692
+ outputs=[custom_model_file, custom_config_file, custom_vocab_file, custom_model_url]
693
+ )
694
+
695
+ download_btn.click(
696
+ download_audiobooks,
697
+ outputs=[download_files]
698
+ )
699
+
700
+ demo.launch(share=True)
legacy/v1.0/legacy/ebook2audiobook.py ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+
3
+ import os
4
+ import shutil
5
+ import subprocess
6
+ import re
7
+ from pydub import AudioSegment
8
+ import tempfile
9
+ from pydub import AudioSegment
10
+ import os
11
+ import nltk
12
+ from nltk.tokenize import sent_tokenize
13
+ nltk.download('punkt') # Make sure to download the necessary models
14
+ def is_folder_empty(folder_path):
15
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
16
+ # List directory contents
17
+ if not os.listdir(folder_path):
18
+ return True # The folder is empty
19
+ else:
20
+ return False # The folder is not empty
21
+ else:
22
+ print(f"The path {folder_path} is not a valid folder.")
23
+ return None # The path is not a valid folder
24
+
25
+ def remove_folder_with_contents(folder_path):
26
+ try:
27
+ shutil.rmtree(folder_path)
28
+ print(f"Successfully removed {folder_path} and all of its contents.")
29
+ except Exception as e:
30
+ print(f"Error removing {folder_path}: {e}")
31
+
32
+
33
+
34
+
35
+ def wipe_folder(folder_path):
36
+ # Check if the folder exists
37
+ if not os.path.exists(folder_path):
38
+ print(f"The folder {folder_path} does not exist.")
39
+ return
40
+
41
+ # Iterate over all the items in the given folder
42
+ for item in os.listdir(folder_path):
43
+ item_path = os.path.join(folder_path, item)
44
+ # If it's a file, remove it and print a message
45
+ if os.path.isfile(item_path):
46
+ os.remove(item_path)
47
+ print(f"Removed file: {item_path}")
48
+ # If it's a directory, remove it recursively and print a message
49
+ elif os.path.isdir(item_path):
50
+ shutil.rmtree(item_path)
51
+ print(f"Removed directory and its contents: {item_path}")
52
+
53
+ print(f"All contents wiped from {folder_path}.")
54
+
55
+
56
+ # Example usage
57
+ # folder_to_wipe = 'path_to_your_folder'
58
+ # wipe_folder(folder_to_wipe)
59
+
60
+
61
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
62
+ # Function to sort chapters based on their numeric order
63
+ def sort_key(chapter_file):
64
+ numbers = re.findall(r'\d+', chapter_file)
65
+ return int(numbers[0]) if numbers else 0
66
+
67
+ # Extract metadata and cover image from the eBook file
68
+ def extract_metadata_and_cover(ebook_path):
69
+ try:
70
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
71
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
72
+ if os.path.exists(cover_path):
73
+ return cover_path
74
+ except Exception as e:
75
+ print(f"Error extracting eBook metadata or cover: {e}")
76
+ return None
77
+ # Combine WAV files into a single file
78
+ def combine_wav_files(chapter_files, output_path):
79
+ # Initialize an empty audio segment
80
+ combined_audio = AudioSegment.empty()
81
+
82
+ # Sequentially append each file to the combined_audio
83
+ for chapter_file in chapter_files:
84
+ audio_segment = AudioSegment.from_wav(chapter_file)
85
+ combined_audio += audio_segment
86
+ # Export the combined audio to the output file path
87
+ combined_audio.export(output_path, format='wav')
88
+ print(f"Combined audio saved to {output_path}")
89
+
90
+ # Function to generate metadata for M4B chapters
91
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
92
+ with open(metadata_file, 'w') as file:
93
+ file.write(';FFMETADATA1\n')
94
+ start_time = 0
95
+ for index, chapter_file in enumerate(chapter_files):
96
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
97
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
98
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
99
+ start_time += duration_ms
100
+
101
+ # Generate the final M4B file using ffmpeg
102
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
103
+ # Ensure the output directory exists
104
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
105
+
106
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
107
+ if cover_image:
108
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
109
+ else:
110
+ ffmpeg_cmd += ['-map', '0:a']
111
+
112
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
113
+ if cover_image:
114
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
115
+ ffmpeg_cmd += [output_m4b]
116
+
117
+ subprocess.run(ffmpeg_cmd, check=True)
118
+
119
+
120
+
121
+ # Main logic
122
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
123
+ temp_dir = tempfile.gettempdir()
124
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
125
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
126
+ cover_image = extract_metadata_and_cover(ebook_file)
127
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
128
+
129
+ combine_wav_files(chapter_files, temp_combined_wav)
130
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
131
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
132
+
133
+ # Cleanup
134
+ if os.path.exists(temp_combined_wav):
135
+ os.remove(temp_combined_wav)
136
+ if os.path.exists(metadata_file):
137
+ os.remove(metadata_file)
138
+ if cover_image and os.path.exists(cover_image):
139
+ os.remove(cover_image)
140
+
141
+ # Example usage
142
+ # create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')
143
+
144
+
145
+
146
+
147
+
148
+
149
+ #this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
150
+ import os
151
+ import subprocess
152
+ import ebooklib
153
+ from ebooklib import epub
154
+ from bs4 import BeautifulSoup
155
+ import re
156
+ import csv
157
+ import nltk
158
+
159
+ # Only run the main script if Value is True
160
+ def create_chapter_labeled_book(ebook_file_path):
161
+ # Function to ensure the existence of a directory
162
+ def ensure_directory(directory_path):
163
+ if not os.path.exists(directory_path):
164
+ os.makedirs(directory_path)
165
+ print(f"Created directory: {directory_path}")
166
+
167
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
168
+
169
+ def convert_to_epub(input_path, output_path):
170
+ # Convert the ebook to EPUB format using Calibre's ebook-convert
171
+ try:
172
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
173
+ except subprocess.CalledProcessError as e:
174
+ print(f"An error occurred while converting the eBook: {e}")
175
+ return False
176
+ return True
177
+
178
+ def save_chapters_as_text(epub_path):
179
+ # Create the directory if it doesn't exist
180
+ directory = os.path.join(".", "Working_files", "temp_ebook")
181
+ ensure_directory(directory)
182
+
183
+ # Open the EPUB file
184
+ book = epub.read_epub(epub_path)
185
+
186
+ previous_chapter_text = ''
187
+ previous_filename = ''
188
+ chapter_counter = 0
189
+
190
+ # Iterate through the items in the EPUB file
191
+ for item in book.get_items():
192
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
193
+ # Use BeautifulSoup to parse HTML content
194
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
195
+ text = soup.get_text()
196
+
197
+ # Check if the text is not empty
198
+ if text.strip():
199
+ if len(text) < 2300 and previous_filename:
200
+ # Append text to the previous chapter if it's short
201
+ with open(previous_filename, 'a', encoding='utf-8') as file:
202
+ file.write('\n' + text)
203
+ else:
204
+ # Create a new chapter file and increment the counter
205
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
206
+ chapter_counter += 1
207
+ with open(previous_filename, 'w', encoding='utf-8') as file:
208
+ file.write(text)
209
+ print(f"Saved chapter: {previous_filename}")
210
+
211
+ # Example usage
212
+ input_ebook = ebook_file_path # Replace with your eBook file path
213
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
214
+
215
+
216
+ if os.path.exists(output_epub):
217
+ os.remove(output_epub)
218
+ print(f"File {output_epub} has been removed.")
219
+ else:
220
+ print(f"The file {output_epub} does not exist.")
221
+
222
+ if convert_to_epub(input_ebook, output_epub):
223
+ save_chapters_as_text(output_epub)
224
+
225
+ # Download the necessary NLTK data (if not already present)
226
+ nltk.download('punkt')
227
+
228
+ def process_chapter_files(folder_path, output_csv):
229
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
230
+ writer = csv.writer(csvfile)
231
+ # Write the header row
232
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
233
+
234
+ # Process each chapter file
235
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
236
+ for filename in chapter_files:
237
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
238
+ chapter_number = int(filename.split('_')[1].split('.')[0])
239
+ file_path = os.path.join(folder_path, filename)
240
+
241
+ try:
242
+ with open(file_path, 'r', encoding='utf-8') as file:
243
+ text = file.read()
244
+ # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
245
+ if text:
246
+ text = "NEWCHAPTERABC" + text
247
+ sentences = nltk.tokenize.sent_tokenize(text)
248
+ for sentence in sentences:
249
+ start_location = text.find(sentence)
250
+ end_location = start_location + len(sentence)
251
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
252
+ except Exception as e:
253
+ print(f"Error processing file {filename}: {e}")
254
+
255
+ # Example usage
256
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
257
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
258
+
259
+ process_chapter_files(folder_path, output_csv)
260
+
261
+ def sort_key(filename):
262
+ """Extract chapter number for sorting."""
263
+ match = re.search(r'chapter_(\d+)\.txt', filename)
264
+ return int(match.group(1)) if match else 0
265
+
266
+ def combine_chapters(input_folder, output_file):
267
+ # Create the output folder if it doesn't exist
268
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
269
+
270
+ # List all txt files and sort them by chapter number
271
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
272
+ sorted_files = sorted(files, key=sort_key)
273
+
274
+ with open(output_file, 'w', encoding='utf-8') as outfile: # Specify UTF-8 encoding here
275
+ for i, filename in enumerate(sorted_files):
276
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile: # And here
277
+ outfile.write(infile.read())
278
+ # Add the marker unless it's the last file
279
+ if i < len(sorted_files) - 1:
280
+ outfile.write("\nNEWCHAPTERABC\n")
281
+
282
+ # Paths
283
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
284
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
285
+
286
+
287
+ # Combine the chapters
288
+ combine_chapters(input_folder, output_file)
289
+
290
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
291
+
292
+
293
+ #create_chapter_labeled_book()
294
+
295
+
296
+
297
+
298
+ import os
299
+ import subprocess
300
+ import sys
301
+ import torchaudio
302
+
303
+ # Check if Calibre's ebook-convert tool is installed
304
+ def calibre_installed():
305
+ try:
306
+ subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
307
+ return True
308
+ except FileNotFoundError:
309
+ print("Calibre is not installed. Please install Calibre for this functionality.")
310
+ return False
311
+
312
+
313
+ import os
314
+ import torch
315
+ from TTS.api import TTS
316
+ from nltk.tokenize import sent_tokenize
317
+ from pydub import AudioSegment
318
+ # Assuming split_long_sentence and wipe_folder are defined elsewhere in your code
319
+
320
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
321
+ default_language_code = "en"
322
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
323
+
324
+ def combine_wav_files(input_directory, output_directory, file_name):
325
+ # Ensure that the output directory exists, create it if necessary
326
+ os.makedirs(output_directory, exist_ok=True)
327
+
328
+ # Specify the output file path
329
+ output_file_path = os.path.join(output_directory, file_name)
330
+
331
+ # Initialize an empty audio segment
332
+ combined_audio = AudioSegment.empty()
333
+
334
+ # Get a list of all .wav files in the specified input directory and sort them
335
+ input_file_paths = sorted(
336
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
337
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
338
+ )
339
+
340
+ # Sequentially append each file to the combined_audio
341
+ for input_file_path in input_file_paths:
342
+ audio_segment = AudioSegment.from_wav(input_file_path)
343
+ combined_audio += audio_segment
344
+
345
+ # Export the combined audio to the output file path
346
+ combined_audio.export(output_file_path, format='wav')
347
+
348
+ print(f"Combined audio saved to {output_file_path}")
349
+
350
+ # Function to split long strings into parts
351
+ def split_long_sentence(sentence, max_length=249, max_pauses=10):
352
+ """
353
+ Splits a sentence into parts based on length or number of pauses without recursion.
354
+
355
+ :param sentence: The sentence to split.
356
+ :param max_length: Maximum allowed length of a sentence.
357
+ :param max_pauses: Maximum allowed number of pauses in a sentence.
358
+ :return: A list of sentence parts that meet the criteria.
359
+ """
360
+ parts = []
361
+ while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
362
+ possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
363
+ if possible_splits:
364
+ # Find the best place to split the sentence, preferring the last possible split to keep parts longer
365
+ split_at = possible_splits[-1] + 1
366
+ else:
367
+ # If no punctuation to split on within max_length, split at max_length
368
+ split_at = max_length
369
+
370
+ # Split the sentence and add the first part to the list
371
+ parts.append(sentence[:split_at].strip())
372
+ sentence = sentence[split_at:].strip()
373
+
374
+ # Add the remaining part of the sentence
375
+ parts.append(sentence)
376
+ return parts
377
+
378
+ """
379
+ if 'tts' not in locals():
380
+ tts = TTS(selected_tts_model, progress_bar=True).to(device)
381
+ """
382
+ from tqdm import tqdm
383
+
384
+ # Convert chapters to audio using XTTS
385
+ def convert_chapters_to_audio(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
386
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
387
+ tts = TTS(selected_tts_model, progress_bar=False).to(device) # Set progress_bar to False to avoid nested progress bars
388
+
389
+ if not os.path.exists(output_audio_dir):
390
+ os.makedirs(output_audio_dir)
391
+
392
+ for chapter_file in sorted(os.listdir(chapters_dir)):
393
+ if chapter_file.endswith('.txt'):
394
+ # Extract chapter number from the filename
395
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
396
+ if match:
397
+ chapter_num = int(match.group(1))
398
+ else:
399
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
400
+ continue
401
+
402
+ chapter_path = os.path.join(chapters_dir, chapter_file)
403
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
404
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
405
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
406
+ os.makedirs(temp_audio_directory, exist_ok=True)
407
+ temp_count = 0
408
+
409
+ with open(chapter_path, 'r', encoding='utf-8') as file:
410
+ chapter_text = file.read()
411
+ # Use the specified language model for sentence tokenization
412
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
413
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
414
+ fragments = []
415
+ if language == "en":
416
+ fragments = split_long_sentence(sentence, max_length=249, max_pauses=10)
417
+ if language == "it":
418
+ fragments = split_long_sentence(sentence, max_length=213, max_pauses=10)
419
+ for fragment in fragments:
420
+ if fragment != "": #a hot fix to avoid blank fragments
421
+ print(f"Generating fragment: {fragment}...")
422
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
423
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
424
+ language_code = language if language else default_language_code
425
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
426
+ temp_count += 1
427
+
428
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
429
+ wipe_folder(temp_audio_directory)
430
+ print(f"Converted chapter {chapter_num} to audio.")
431
+
432
+
433
+
434
+ # Main execution flow
435
+ if __name__ == "__main__":
436
+ if len(sys.argv) < 2:
437
+ print("Usage: python script.py <ebook_file_path> [target_voice_file_path]")
438
+ sys.exit(1)
439
+
440
+ ebook_file_path = sys.argv[1]
441
+ target_voice = sys.argv[2] if len(sys.argv) > 2 else None
442
+ language = sys.argv[3] if len(sys.argv) > 3 else None
443
+
444
+ if not calibre_installed():
445
+ sys.exit(1)
446
+
447
+ working_files = os.path.join(".","Working_files", "temp_ebook")
448
+ full_folder_working_files =os.path.join(".","Working_files")
449
+ chapters_directory = os.path.join(".","Working_files", "temp_ebook")
450
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
451
+
452
+ print("Wiping and removeing Working_files folder...")
453
+ remove_folder_with_contents(full_folder_working_files)
454
+
455
+ print("Wiping and and removeing chapter_wav_files folder...")
456
+ remove_folder_with_contents(output_audio_directory)
457
+
458
+ create_chapter_labeled_book(ebook_file_path)
459
+ audiobook_output_path = os.path.join(".", "Audiobooks")
460
+ print(f"{chapters_directory}||||{output_audio_directory}|||||{target_voice}")
461
+ convert_chapters_to_audio(chapters_directory, output_audio_directory, target_voice, language)
462
+ create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
legacy/v1.0/legacy/gradio_gui_with_email_and_que.py ADDED
@@ -0,0 +1,614 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("starting...")
2
+ import ebooklib
3
+ from ebooklib import epub
4
+
5
+ import os
6
+ import subprocess
7
+ import ebooklib
8
+ from ebooklib import epub
9
+ from bs4 import BeautifulSoup
10
+ import re
11
+ import csv
12
+ import nltk
13
+
14
+ import os
15
+ import subprocess
16
+ import sys
17
+ import torchaudio
18
+
19
+ import os
20
+ import torch
21
+ from TTS.api import TTS
22
+ from nltk.tokenize import sent_tokenize
23
+ from pydub import AudioSegment
24
+
25
+ from tqdm import tqdm
26
+
27
+
28
+
29
+ import os
30
+ import subprocess
31
+ import ebooklib
32
+ from ebooklib import epub
33
+ from bs4 import BeautifulSoup
34
+ import re
35
+ import csv
36
+ import nltk
37
+
38
+ from bs4 import BeautifulSoup
39
+ import os
40
+ import shutil
41
+ import subprocess
42
+ import re
43
+ from pydub import AudioSegment
44
+ import tempfile
45
+ import urllib.request
46
+ import zipfile
47
+ import requests
48
+ from tqdm import tqdm
49
+ import nltk
50
+ from nltk.tokenize import sent_tokenize
51
+ import torch
52
+ import torchaudio
53
+ import gradio as gr
54
+ from threading import Lock, Thread
55
+ from queue import Queue
56
+ import smtplib
57
+ from email.mime.text import MIMEText
58
+
59
+
60
+ import os
61
+ import shutil
62
+ import subprocess
63
+ import re
64
+ from pydub import AudioSegment
65
+ import tempfile
66
+ from pydub import AudioSegment
67
+ import os
68
+ import nltk
69
+ from nltk.tokenize import sent_tokenize
70
+ import sys
71
+ import torch
72
+ from TTS.api import TTS
73
+ from TTS.tts.configs.xtts_config import XttsConfig
74
+ from TTS.tts.models.xtts import Xtts
75
+ from tqdm import tqdm
76
+ import gradio as gr
77
+ from gradio import Progress
78
+ import urllib.request
79
+ import zipfile
80
+
81
+
82
+ default_target_voice_path = "default_voice.wav" # Ensure this is a valid path
83
+ default_language_code = "en"
84
+
85
+
86
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
87
+ print(f"Device selected is: {device}")
88
+
89
+ nltk.download('punkt') # Ensure necessary models are downloaded
90
+
91
+ # Global variables for queue management
92
+ queue = Queue()
93
+ queue_lock = Lock()
94
+
95
+ # Function to send an email with the download link
96
+ def send_email(to_address, download_link):
97
+ from_address = "your_email@example.com" # Replace with your email
98
+ subject = "Your Audiobook is Ready"
99
+ body = f"Your audiobook has been processed. You can download it from the following link: {download_link}"
100
+
101
+ msg = MIMEText(body)
102
+ msg['Subject'] = subject
103
+ msg['From'] = from_address
104
+ msg['To'] = to_address
105
+
106
+ try:
107
+ with smtplib.SMTP('smtp.example.com', 587) as server: # Replace with your SMTP server details
108
+ server.starttls()
109
+ server.login(from_address, "your_password") # Replace with your email password
110
+ server.sendmail(from_address, [to_address], msg.as_string())
111
+ print(f"Email sent to {to_address}")
112
+ except Exception as e:
113
+ print(f"Failed to send email: {e}")
114
+
115
+ # Function to download and extract the custom model
116
+ def download_and_extract_zip(url, extract_to='.'):
117
+ try:
118
+ os.makedirs(extract_to, exist_ok=True)
119
+ zip_path = os.path.join(extract_to, 'model.zip')
120
+
121
+ with tqdm(unit='B', unit_scale=True, miniters=1, desc="Downloading Model") as t:
122
+ def reporthook(blocknum, blocksize, totalsize):
123
+ t.total = totalsize
124
+ t.update(blocknum * blocksize - t.n)
125
+ urllib.request.urlretrieve(url, zip_path, reporthook=reporthook)
126
+ print(f"Downloaded zip file to {zip_path}")
127
+
128
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
129
+ files = zip_ref.namelist()
130
+ with tqdm(total=len(files), unit="file", desc="Extracting Files") as t:
131
+ for file in files:
132
+ if not file.endswith('/'):
133
+ extracted_path = zip_ref.extract(file, extract_to)
134
+ base_file_path = os.path.join(extract_to, os.path.basename(file))
135
+ os.rename(extracted_path, base_file_path)
136
+ t.update(1)
137
+
138
+ os.remove(zip_path)
139
+ for root, dirs, files in os.walk(extract_to, topdown=False):
140
+ for name in dirs:
141
+ os.rmdir(os.path.join(root, name))
142
+ print(f"Extracted files to {extract_to}")
143
+
144
+ required_files = ['model.pth', 'config.json', 'vocab.json_']
145
+ missing_files = [file for file in required_files if not os.path.exists(os.path.join(extract_to, file))]
146
+
147
+ if not missing_files:
148
+ print("All required files (model.pth, config.json, vocab.json_) found.")
149
+ else:
150
+ print(f"Missing files: {', '.join(missing_files)}")
151
+
152
+ except Exception as e:
153
+ print(f"Failed to download or extract zip file: {e}")
154
+
155
+ # Function to check if a folder is empty
156
+ def is_folder_empty(folder_path):
157
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
158
+ return not os.listdir(folder_path)
159
+ else:
160
+ print(f"The path {folder_path} is not a valid folder.")
161
+ return None
162
+
163
+ # Function to remove a folder and its contents
164
+ def remove_folder_with_contents(folder_path):
165
+ try:
166
+ shutil.rmtree(folder_path)
167
+ print(f"Successfully removed {folder_path} and all of its contents.")
168
+ except Exception as e:
169
+ print(f"Error removing {folder_path}: {e}")
170
+
171
+ # Function to wipe the contents of a folder
172
+ def wipe_folder(folder_path):
173
+ if not os.path.exists(folder_path):
174
+ print(f"The folder {folder_path} does not exist.")
175
+ return
176
+
177
+ for item in os.listdir(folder_path):
178
+ item_path = os.path.join(folder_path, item)
179
+ if os.path.isfile(item_path):
180
+ os.remove(item_path)
181
+ print(f"Removed file: {item_path}")
182
+ elif os.path.isdir(item_path):
183
+ shutil.rmtree(item_path)
184
+ print(f"Removed directory and its contents: {item_path}")
185
+
186
+ print(f"All contents wiped from {folder_path}.")
187
+
188
+ # Function to create M4B from chapters
189
+ def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
190
+ def sort_key(chapter_file):
191
+ numbers = re.findall(r'\d+', chapter_file)
192
+ return int(numbers[0]) if numbers else 0
193
+
194
+ def extract_metadata_and_cover(ebook_path):
195
+ try:
196
+ cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
197
+ subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
198
+ if os.path.exists(cover_path):
199
+ return cover_path
200
+ except Exception as e:
201
+ print(f"Error extracting eBook metadata or cover: {e}")
202
+ return None
203
+
204
+ def combine_wav_files(chapter_files, output_path):
205
+ combined_audio = AudioSegment.empty()
206
+ for chapter_file in chapter_files:
207
+ audio_segment = AudioSegment.from_wav(chapter_file)
208
+ combined_audio += audio_segment
209
+ combined_audio.export(output_path, format='wav')
210
+ print(f"Combined audio saved to {output_path}")
211
+
212
+ def generate_ffmpeg_metadata(chapter_files, metadata_file):
213
+ with open(metadata_file, 'w') as file:
214
+ file.write(';FFMETADATA1\n')
215
+ start_time = 0
216
+ for index, chapter_file in enumerate(chapter_files):
217
+ duration_ms = len(AudioSegment.from_wav(chapter_file))
218
+ file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
219
+ file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
220
+ start_time += duration_ms
221
+
222
+ def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
223
+ os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
224
+
225
+ ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
226
+ if cover_image:
227
+ ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
228
+ else:
229
+ ffmpeg_cmd += ['-map', '0:a']
230
+
231
+ ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
232
+ if cover_image:
233
+ ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
234
+ ffmpeg_cmd += [output_m4b]
235
+
236
+ subprocess.run(ffmpeg_cmd, check=True)
237
+
238
+ chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
239
+ temp_dir = tempfile.gettempdir()
240
+ temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
241
+ metadata_file = os.path.join(temp_dir, 'metadata.txt')
242
+ cover_image = extract_metadata_and_cover(ebook_file)
243
+ output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')
244
+
245
+ combine_wav_files(chapter_files, temp_combined_wav)
246
+ generate_ffmpeg_metadata(chapter_files, metadata_file)
247
+ create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)
248
+
249
+ if os.path.exists(temp_combined_wav):
250
+ os.remove(temp_combined_wav)
251
+ if os.path.exists(metadata_file):
252
+ os.remove(metadata_file)
253
+ if cover_image and os.path.exists(cover_image):
254
+ os.remove(cover_image)
255
+
256
+ # Function to create chapter-labeled book
257
+ def create_chapter_labeled_book(ebook_file_path):
258
+ def ensure_directory(directory_path):
259
+ if not os.path.exists(directory_path):
260
+ os.makedirs(directory_path)
261
+ print(f"Created directory: {directory_path}")
262
+
263
+ ensure_directory(os.path.join(".", 'Working_files', 'Book'))
264
+
265
+ def convert_to_epub(input_path, output_path):
266
+ try:
267
+ subprocess.run(['ebook-convert', input_path, output_path], check=True)
268
+ except subprocess.CalledProcessError as e:
269
+ print(f"An error occurred while converting the eBook: {e}")
270
+ return False
271
+ return True
272
+
273
+ def save_chapters_as_text(epub_path):
274
+ directory = os.path.join(".", "Working_files", "temp_ebook")
275
+ ensure_directory(directory)
276
+
277
+ book = epub.read_epub(epub_path)
278
+
279
+ previous_chapter_text = ''
280
+ previous_filename = ''
281
+ chapter_counter = 0
282
+
283
+ for item in book.get_items():
284
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
285
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
286
+ text = soup.get_text()
287
+
288
+ if text.strip():
289
+ if len(text) < 2300 and previous_filename:
290
+ with open(previous_filename, 'a', encoding='utf-8') as file:
291
+ file.write('\n' + text)
292
+ else:
293
+ previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
294
+ chapter_counter += 1
295
+ with open(previous_filename, 'w', encoding='utf-8') as file:
296
+ file.write(text)
297
+ print(f"Saved chapter: {previous_filename}")
298
+
299
+ input_ebook = ebook_file_path
300
+ output_epub = os.path.join(".", "Working_files", "temp.epub")
301
+
302
+ if os.path.exists(output_epub):
303
+ os.remove(output_epub)
304
+ print(f"File {output_epub} has been removed.")
305
+ else:
306
+ print(f"The file {output_epub} does not exist.")
307
+
308
+ if convert_to_epub(input_ebook, output_epub):
309
+ save_chapters_as_text(output_epub)
310
+
311
+ nltk.download('punkt')
312
+
313
+ def process_chapter_files(folder_path, output_csv):
314
+ with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
315
+ writer = csv.writer(csvfile)
316
+ writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
317
+
318
+ chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
319
+ for filename in chapter_files:
320
+ if filename.startswith('chapter_') and filename.endswith('.txt'):
321
+ chapter_number = int(filename.split('_')[1].split('.')[0])
322
+ file_path = os.path.join(folder_path, filename)
323
+
324
+ try:
325
+ with open(file_path, 'r', encoding='utf-8') as file:
326
+ text = file.read()
327
+ if text:
328
+ text = "NEWCHAPTERABC" + text
329
+ sentences = nltk.tokenize.sent_tokenize(text)
330
+ for sentence in sentences:
331
+ start_location = text.find(sentence)
332
+ end_location = start_location + len(sentence)
333
+ writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
334
+ except Exception as e:
335
+ print(f"Error processing file {filename}: {e}")
336
+
337
+ folder_path = os.path.join(".", "Working_files", "temp_ebook")
338
+ output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")
339
+
340
+ process_chapter_files(folder_path, output_csv)
341
+
342
+ def sort_key(filename):
343
+ match = re.search(r'chapter_(\d+)\.txt', filename)
344
+ return int(match.group(1)) if match else 0
345
+
346
+ def combine_chapters(input_folder, output_file):
347
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
348
+
349
+ files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
350
+ sorted_files = sorted(files, key=sort_key)
351
+
352
+ with open(output_file, 'w', encoding='utf-8') as outfile:
353
+ for i, filename in enumerate(sorted_files):
354
+ with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile:
355
+ outfile.write(infile.read())
356
+ if i < len(sorted_files) - 1:
357
+ outfile.write("\nNEWCHAPTERABC\n")
358
+
359
+ input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
360
+ output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')
361
+
362
+ combine_chapters(input_folder, output_file)
363
+ ensure_directory(os.path.join(".", "Working_files", "Book"))
364
+
365
+ # Function to combine WAV files
366
+ def combine_wav_files(input_directory, output_directory, file_name):
367
+ os.makedirs(output_directory, exist_ok=True)
368
+ output_file_path = os.path.join(output_directory, file_name)
369
+ combined_audio = AudioSegment.empty()
370
+ input_file_paths = sorted(
371
+ [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
372
+ key=lambda f: int(''.join(filter(str.isdigit, f)))
373
+ )
374
+ for input_file_path in input_file_paths:
375
+ audio_segment = AudioSegment.from_wav(input_file_path)
376
+ combined_audio += audio_segment
377
+ combined_audio.export(output_file_path, format='wav')
378
+ print(f"Combined audio saved to {output_file_path}")
379
+
380
+ # Function to split long sentences
381
+ def split_long_sentence(sentence, max_length=249, max_pauses=10):
382
+ parts = []
383
+ while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
384
+ possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
385
+ if possible_splits:
386
+ split_at = possible_splits[-1] + 1
387
+ else:
388
+ split_at = max_length
389
+ parts.append(sentence[:split_at].strip())
390
+ sentence = sentence[split_at:].strip()
391
+ parts.append(sentence)
392
+ return parts
393
+
394
+ # Function to convert chapters to audio using custom model
395
+ def convert_chapters_to_audio_custom_model(chapters_dir, output_audio_dir, target_voice_path=None, language=None, custom_model=None):
396
+ if target_voice_path is None:
397
+ target_voice_path = default_target_voice_path
398
+ if custom_model:
399
+ print("Loading custom model...")
400
+ config = XttsConfig()
401
+ config.load_json(custom_model['config'])
402
+ model = Xtts.init_from_config(config)
403
+ model.load_checkpoint(config, checkpoint_path=custom_model['model'], vocab_path=custom_model['vocab'], use_deepspeed=False)
404
+ model.device
405
+ print("Computing speaker latents...")
406
+ gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[target_voice_path])
407
+ else:
408
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
409
+ tts = TTS(selected_tts_model, progress_bar=False).to(device)
410
+
411
+ if not os.path.exists(output_audio_dir):
412
+ os.makedirs(output_audio_dir)
413
+
414
+ for chapter_file in sorted(os.listdir(chapters_dir)):
415
+ if chapter_file.endswith('.txt'):
416
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
417
+ if match:
418
+ chapter_num = int(match.group(1))
419
+ else:
420
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
421
+ continue
422
+
423
+ chapter_path = os.path.join(chapters_dir, chapter_file)
424
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
425
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
426
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
427
+ os.makedirs(temp_audio_directory, exist_ok=True)
428
+ temp_count = 0
429
+
430
+ with open(chapter_path, 'r', encoding='utf-8') as file:
431
+ chapter_text = file.read()
432
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
433
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
434
+ fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
435
+ for fragment in fragments:
436
+ if fragment != "":
437
+ print(f"Generating fragment: {fragment}...")
438
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
439
+ if custom_model:
440
+ out = model.inference(fragment, language, gpt_cond_latent, speaker_embedding, temperature=0.7)
441
+ torchaudio.save(fragment_file_path, torch.tensor(out["wav"]).unsqueeze(0), 24000)
442
+ else:
443
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
444
+ language_code = language if language else default_language_code
445
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
446
+ temp_count += 1
447
+
448
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
449
+ wipe_folder(temp_audio_directory)
450
+ print(f"Converted chapter {chapter_num} to audio.")
451
+
452
+ # Function to convert chapters to audio using standard model
453
+ def convert_chapters_to_audio_standard_model(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
454
+ selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
455
+ tts = TTS(selected_tts_model, progress_bar=False).to(device)
456
+
457
+ if not os.path.exists(output_audio_dir):
458
+ os.makedirs(output_audio_dir)
459
+
460
+ for chapter_file in sorted(os.listdir(chapters_dir)):
461
+ if chapter_file.endswith('.txt'):
462
+ match = re.search(r"chapter_(\d+).txt", chapter_file)
463
+ if match:
464
+ chapter_num = int(match.group(1))
465
+ else:
466
+ print(f"Skipping file {chapter_file} as it does not match the expected format.")
467
+ continue
468
+
469
+ chapter_path = os.path.join(chapters_dir, chapter_file)
470
+ output_file_name = f"audio_chapter_{chapter_num}.wav"
471
+ output_file_path = os.path.join(output_audio_dir, output_file_name)
472
+ temp_audio_directory = os.path.join(".", "Working_files", "temp")
473
+ os.makedirs(temp_audio_directory, exist_ok=True)
474
+ temp_count = 0
475
+
476
+ with open(chapter_path, 'r', encoding='utf-8') as file:
477
+ chapter_text = file.read()
478
+ sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
479
+ for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
480
+ fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
481
+ for fragment in fragments:
482
+ if fragment != "":
483
+ print(f"Generating fragment: {fragment}...")
484
+ fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
485
+ speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
486
+ language_code = language if language else default_language_code
487
+ tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
488
+ temp_count += 1
489
+
490
+ combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
491
+ wipe_folder(temp_audio_directory)
492
+ print(f"Converted chapter {chapter_num} to audio.")
493
+
494
+ # Function to handle the processing of an eBook to an audiobook
495
+ def process_request(ebook_file, target_voice, language, email, use_custom_model, custom_model):
496
+ working_files = os.path.join(".", "Working_files", "temp_ebook")
497
+ full_folder_working_files = os.path.join(".", "Working_files")
498
+ chapters_directory = os.path.join(".", "Working_files", "temp_ebook")
499
+ output_audio_directory = os.path.join(".", 'Chapter_wav_files')
500
+ remove_folder_with_contents(full_folder_working_files)
501
+ remove_folder_with_contents(output_audio_directory)
502
+
503
+ create_chapter_labeled_book(ebook_file.name)
504
+ audiobook_output_path = os.path.join(".", "Audiobooks")
505
+
506
+ if use_custom_model:
507
+ convert_chapters_to_audio_custom_model(chapters_directory, output_audio_directory, target_voice, language, custom_model)
508
+ else:
509
+ convert_chapters_to_audio_standard_model(chapters_directory, output_audio_directory, target_voice, language)
510
+
511
+ create_m4b_from_chapters(output_audio_directory, ebook_file.name, audiobook_output_path)
512
+
513
+ m4b_filepath = os.path.join(audiobook_output_path, os.path.splitext(os.path.basename(ebook_file.name))[0] + '.m4b')
514
+
515
+ # Upload the final audiobook to file.io
516
+ with open(m4b_filepath, 'rb') as f:
517
+ response = requests.post('https://file.io', files={'file': f})
518
+ download_link = response.json().get('link', '')
519
+
520
+ # Send the download link to the user's email
521
+ if email and download_link:
522
+ send_email(email, download_link)
523
+
524
+ return download_link
525
+
526
+ # Function to manage the queue and process each request sequentially
527
+ def handle_queue():
528
+ while True:
529
+ ebook_file, target_voice, language, email, use_custom_model, custom_model = queue.get()
530
+ process_request(ebook_file, target_voice, language, email, use_custom_model, custom_model)
531
+ queue.task_done()
532
+
533
+ # Start the queue handler thread
534
+ thread = Thread(target=handle_queue, daemon=True)
535
+ thread.start()
536
+
537
+ # Gradio function to add a request to the queue
538
+ def enqueue_request(ebook_file, target_voice_file, language, email, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file, custom_model_url=None):
539
+ target_voice = target_voice_file.name if target_voice_file else None
540
+ custom_model = None
541
+
542
+ if use_custom_model and custom_model_file and custom_config_file and custom_vocab_file:
543
+ custom_model = {
544
+ 'model': custom_model_file.name,
545
+ 'config': custom_config_file.name,
546
+ 'vocab': custom_vocab_file.name
547
+ }
548
+ if use_custom_model and custom_model_url:
549
+ download_dir = os.path.join(".", "Working_files", "custom_model")
550
+ download_and_extract_zip(custom_model_url, download_dir)
551
+ custom_model = {
552
+ 'model': os.path.join(download_dir, 'model.pth'),
553
+ 'config': os.path.join(download_dir, 'config.json'),
554
+ 'vocab': os.path.join(download_dir, 'vocab.json_')
555
+ }
556
+
557
+ # Add request to the queue
558
+ queue_lock.acquire()
559
+ queue.put((ebook_file, target_voice, language, email, use_custom_model, custom_model))
560
+ position = queue.qsize()
561
+ queue_lock.release()
562
+ return f"Your request has been added to the queue. You are number {position} in line."
563
+
564
+ # Gradio UI setup
565
+ language_options = [
566
+ "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko"
567
+ ]
568
+
569
+ theme = gr.themes.Soft(
570
+ primary_hue="blue",
571
+ secondary_hue="blue",
572
+ neutral_hue="blue",
573
+ text_size=gr.themes.sizes.text_md,
574
+ )
575
+
576
+ with gr.Blocks(theme=theme) as demo:
577
+ gr.Markdown(
578
+ """
579
+ # eBook to Audiobook Converter
580
+
581
+ Transform your eBooks into immersive audiobooks with optional custom TTS models.
582
+ """
583
+ )
584
+
585
+ with gr.Row():
586
+ with gr.Column(scale=3):
587
+ ebook_file = gr.File(label="eBook File")
588
+ target_voice_file = gr.File(label="Target Voice File (Optional)")
589
+ language = gr.Dropdown(label="Language", choices=language_options, value="en")
590
+ email = gr.Textbox(label="Email Address")
591
+
592
+ with gr.Column(scale=3):
593
+ use_custom_model = gr.Checkbox(label="Use Custom Model")
594
+ custom_model_file = gr.File(label="Custom Model File (Optional)", visible=False)
595
+ custom_config_file = gr.File(label="Custom Config File (Optional)", visible=False)
596
+ custom_vocab_file = gr.File(label="Custom Vocab File (Optional)", visible=False)
597
+ custom_model_url = gr.Textbox(label="Custom Model Zip URL (Optional)", visible=False)
598
+
599
+ convert_btn = gr.Button("Convert to Audiobook", variant="primary")
600
+ queue_status = gr.Textbox(label="Queue Status")
601
+
602
+ convert_btn.click(
603
+ enqueue_request,
604
+ inputs=[ebook_file, target_voice_file, language, email, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file, custom_model_url],
605
+ outputs=[queue_status]
606
+ )
607
+
608
+ use_custom_model.change(
609
+ lambda x: [gr.update(visible=x)] * 4,
610
+ inputs=[use_custom_model],
611
+ outputs=[custom_model_file, custom_config_file, custom_vocab_file, custom_model_url]
612
+ )
613
+
614
+ demo.launch(share=True)
legacy/v1.0/legacy/install.bat ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+ :: Check for administrative privileges
3
+ net session >nul 2>&1
4
+ if %errorLevel% neq 0 (
5
+ echo This script requires administrator privileges.
6
+ echo Switching to administrator...
7
+
8
+ powershell -Command "Start-Process cmd -ArgumentList '/c', '%~dpnx0' -Verb runAs"
9
+ exit /b
10
+ )
11
+
12
+ :: If already elevated, continue the script
13
+ echo Running with administrator privileges...
14
+
15
+ :: Run the PowerShell script in the same directory as this batch file
16
+ powershell -NoProfile -ExecutionPolicy Bypass -File "%~dp0install.ps1"
17
+
18
+ pause
legacy/v1.0/legacy/install.ps1 ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Function to check if the script is running as Administrator
2
+ function Test-IsAdmin {
3
+ $currentUser = New-Object Security.Principal.WindowsPrincipal([Security.Principal.WindowsIdentity]::GetCurrent())
4
+ return $currentUser.IsInRole([Security.Principal.WindowsBuiltInRole]::Administrator)
5
+ }
6
+
7
+ # If the script is not running as Administrator, restart it with elevated privileges
8
+ if (-not (Test-IsAdmin)) {
9
+ Write-Host "This script requires administrative privileges. Restarting as Administrator..." -ForegroundColor Yellow
10
+ Start-Process powershell.exe -ArgumentList "-NoProfile", "-ExecutionPolicy RemoteSigned", "-File", "`"$PSCommandPath`" $Params" -Verb RunAs
11
+ exit
12
+ }
13
+
14
+ ################# Main script starts here with admin privileges #################
15
+
16
+ # Function to check if Conda is installed
17
+ function Check-CondaInstalled {
18
+ Write-Host "Checking if Conda is installed..."
19
+ $condaPath = (Get-Command conda -ErrorAction SilentlyContinue).Source
20
+ if ($condaPath) {
21
+ Write-Host "Conda is already installed at: $condaPath"
22
+ return $true
23
+ } else {
24
+ Write-Host "Conda is not installed."
25
+ return $false
26
+ }
27
+ }
28
+
29
+ function Check-ProgramsInstalled {
30
+ param (
31
+ [string[]]$Programs
32
+ )
33
+
34
+ $programsMissing = @()
35
+
36
+ if (-not (Get-Command choco -ErrorAction SilentlyContinue)) {
37
+ Write-Host "Chocolatey is not installed. Installing Chocolatey..."
38
+ Set-ExecutionPolicy Bypass -Scope Process -Force
39
+ [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072
40
+ iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))
41
+
42
+ if (-not (Get-Command choco -ErrorAction SilentlyContinue)) {
43
+ return $true
44
+ } else {
45
+ Write-Host "Chocolatey installed successfully."
46
+ }
47
+ }
48
+
49
+ foreach ($program in $Programs) {
50
+ if (Get-Command $program -ErrorAction SilentlyContinue) {
51
+ Write-Host "$program is installed."
52
+ } else {
53
+ $programsMissing += $program
54
+ }
55
+ }
56
+
57
+ $missingCount = $programsMissing.Count
58
+
59
+ if ($missingCount -eq 0) {
60
+ return $true
61
+ } else {
62
+ $installedCount = 0
63
+ foreach ($program in $programsMissing) {
64
+ if ($program -eq "ffmpeg") {
65
+ Write-Host "Installing ffmpeg..."
66
+ choco install ffmpeg -y
67
+
68
+ if (Get-Command ffmpeg -ErrorAction SilentlyContinue) {
69
+ Write-Host "ffmpeg installed successfully!"
70
+ $installedCount += 1
71
+ }
72
+ } elseif ($program -eq "calibre") {
73
+ # Avoid conflict with calibre built-in lxml
74
+ pip uninstall lxml -y
75
+
76
+ # Install Calibre using Chocolatey
77
+ Write-Host "Installing Calibre..."
78
+ choco install calibre -y
79
+
80
+ # Verify Calibre installation
81
+ if (Get-Command calibre -ErrorAction SilentlyContinue) {
82
+ Write-Host "Calibre installed successfully!"
83
+ $installedCount += 1
84
+ }
85
+ }
86
+ }
87
+ }
88
+ if ($installedCount -eq $countMissing) {
89
+ return $false
90
+ }
91
+ return $true
92
+ }
93
+
94
+ # Function to check if Docker is installed and running
95
+ function Check-Docker {
96
+ Write-Host "Checking if Docker is installed..."
97
+ $dockerPath = (Get-Command docker -ErrorAction SilentlyContinue).Source
98
+ if ($dockerPath) {
99
+ Write-Host "Docker is installed at: $dockerPath"
100
+ # Check if Docker service is running
101
+ $dockerStatus = (Get-Service -Name com.docker.service -ErrorAction SilentlyContinue).Status
102
+ if ($dockerStatus -eq 'Running') {
103
+ Write-Host "Docker service is running."
104
+ return $true
105
+ } else {
106
+ Write-Host "Docker service is installed but not running. Attempting to start Docker service..."
107
+ Start-Service -Name "com.docker.service" -ErrorAction SilentlyContinue
108
+
109
+ # Wait for Docker service to start
110
+ while ((Get-Service -Name "com.docker.service").Status -ne 'Running') {
111
+ Write-Host "Waiting for Docker service to start..."
112
+ Start-Sleep -Seconds 5
113
+ }
114
+ Write-Host "Docker service is now running."
115
+ return $true
116
+ }
117
+ } else {
118
+ Write-Host "Docker is not installed."
119
+ return $false
120
+ }
121
+ }
122
+
123
+ ######### Miniconda installation
124
+
125
+ $minicondaUrl = "https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe"
126
+ $installerPath = "$env:TEMP\Miniconda3-latest-Windows-x86_64.exe"
127
+
128
+ if (-not (Check-CondaInstalled)) {
129
+ # Check if the Miniconda installer already exists
130
+ if (-not (Test-Path $installerPath)) {
131
+ Write-Host "Downloading Miniconda installer..."
132
+ Invoke-WebRequest -Uri $minicondaUrl -OutFile $installerPath
133
+ } else {
134
+ Write-Host "Miniconda installer already exists at $installerPath. Skipping download."
135
+ }
136
+
137
+ # Set the installation path for Miniconda
138
+ $installPath = "C:\Miniconda3"
139
+
140
+ Write-Host "Installing Miniconda..."
141
+ Start-Process -FilePath $installerPath -ArgumentList "/InstallationType=JustMe", "/RegisterPython=0", "/AddToPath=1", "/S", "/D=$installPath" -NoNewWindow -Wait
142
+
143
+ Write-Host "Verifying Miniconda installation..."
144
+ & "$installPath\Scripts\conda.exe" --version
145
+ Write-Host "Miniconda installation complete."
146
+ } else {
147
+ Write-Host "Skipping Miniconda installation."
148
+ }
149
+
150
+ ######### Docker installation
151
+
152
+ $dockerMsiUrl = "https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe"
153
+ $dockerInstallerPath = "$env:TEMP\DockerInstaller.exe"
154
+
155
+ $dockerUtilsNeeded = Check-ProgramsInstalled -Programs @("ffmpeg", "calibre")
156
+
157
+ if ($dockerUtilsNeeded) {
158
+ if (-not (Check-Docker)) {
159
+ # Verify the installer file or re-download if corrupted or missing
160
+ if (-not (Test-Path $dockerInstallerPath)) {
161
+ Write-Host "Downloading Docker installer for Windows..."
162
+ Invoke-WebRequest -Uri $dockerMsiUrl -OutFile $dockerInstallerPath
163
+ }
164
+
165
+ # Launch the Docker installer
166
+ Write-Host "Launching Docker installer..."
167
+ Start-Process -FilePath $dockerInstallerPath
168
+ Write-Host "Please complete the Docker installation manually."
169
+ pause
170
+
171
+ # Ensure Docker service is running after installation
172
+ Write-Host "Ensuring Docker service is running..."
173
+ Start-Service -Name "com.docker.service" -ErrorAction SilentlyContinue
174
+
175
+ # Wait for Docker service to start
176
+ while ((Get-Service -Name "com.docker.service").Status -ne 'Running') {
177
+ Write-Host "Waiting for Docker service to start..."
178
+ Start-Sleep -Seconds 5
179
+ }
180
+
181
+ Write-Host "Docker service is now running."
182
+ }
183
+ }
184
+
185
+ ######### Install ebook2audiobook
186
+
187
+ if (Check-CondaInstalled) {
188
+
189
+ Write-Host "Installing ebook2audiobook..." -ForegroundColor Yellow
190
+
191
+ # Set the working directory to the script's directory
192
+ $scriptDir = $PSScriptRoot
193
+ Set-Location -Path $scriptDir
194
+
195
+ # Create new Conda environment with Python 3.11 in the script directory, showing progress
196
+ Write-Host "Creating Conda environment with Python 3.11 in $scriptDir..."
197
+ & conda create --prefix "$scriptDir\python_env" python=3.11 -y -v
198
+
199
+ # Ensure the correct Python environment is active
200
+ Write-Host "Checking Python version in Conda environment..."
201
+
202
+ # Get python.exe version from python_env
203
+ $pythonEnvVersion = & "$scriptDir\python_env\python.exe" --version
204
+
205
+ # Get the Conda-managed Python version using conda run
206
+ $pythonVersion = & conda run --prefix "$scriptDir\python_env" python --version
207
+
208
+ if ($pythonVersion.Trim() -eq $pythonEnvVersion.Trim()) {
209
+ Write-Host "Python versions match, proceeding with installation..."
210
+
211
+ if ($dockerUtilsNeeded) {
212
+ # Build Docker image for utils
213
+ Write-Host "Building Docker image for utils..."
214
+ & conda run --prefix "$scriptDir\python_env" docker build -f DockerfileUtils -t utils .
215
+ }
216
+
217
+ # Install required Python packages with pip, showing progress
218
+ Write-Host "Installing required Python packages..."
219
+ & conda run --prefix "$scriptDir\python_env" python.exe -m pip install --upgrade pip --progress-bar on -v
220
+ & conda run --prefix "$scriptDir\python_env" pip install pydub nltk beautifulsoup4 ebooklib translate coqui-tts tqdm mecab mecab-python3 unidic gradio>=4.44.0 docker --progress-bar on -v
221
+
222
+ # Download unidic language model for MeCab with progress
223
+ Write-Host "Downloading unidic language model for MeCab..."
224
+ & conda run --prefix "$scriptDir\python_env" python.exe -m unidic download
225
+
226
+ # Download spacy NLP model with progress
227
+ Write-Host "Downloading spaCy language model..."
228
+ & conda run --prefix "$scriptDir\python_env" python.exe -m spacy download en_core_web_sm
229
+
230
+ # Install ebook2audiobook
231
+ Write-Host "Installing ebook2audiobook..."
232
+ & conda run --prefix "$scriptDir\python_env" pip install -e .
233
+
234
+ # Delete Docker and Miniconda installers if both are installed and running
235
+ if ((Check-CondaInstalled) -and (Check-Docker)) {
236
+ Write-Host "Both Conda and Docker are installed and running. Deleting installer files..."
237
+ Remove-Item -Path $installerPath -Force -ErrorAction SilentlyContinue
238
+ Remove-Item -Path $dockerInstallerPath -Force -ErrorAction SilentlyContinue
239
+ Write-Host "Installer files deleted."
240
+ }
241
+
242
+ Write-Host "******************* ebook2audiobook installation successful! *******************" -ForegroundColor Green
243
+ Write-Host "To launch ebook2audiobook:" -ForegroundColor Yellow
244
+ Write-Host "- in command line mode: ./ebook2audiobook.cmd --headless [other options]"
245
+ Write-Host "- in graphic web mode: ./ebook2audiobook.cmd [--share]"
246
+ } else {
247
+ Write-Host "The python terminal is still using the OS python version $pythonVersion, but it should be $pythonEnvVersion from the python_env virtual environment"
248
+ }
249
+
250
+ # Deactivate Conda environment
251
+ Write-Host "Deactivating Conda environment..."
252
+ & conda deactivate
253
+ } else {
254
+ Write-Host "Installation cannot proceed. Either Conda is not installed or Docker is not running." -ForegroundColor Red
255
+ }
legacy/v1.0/legacy/install.sh ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+ WGET=$(which wget 2>/dev/null)
4
+ CONDA_VERSION=$(conda --version 2>/dev/null)
5
+ DOCKER_UTILS=$(which docker 2>/dev/null)
6
+ DOCKER_UTILS_NEEDED=false
7
+ PACK_MGR=""
8
+ PACK_MGR_OPTIONS=""
9
+
10
+ if [[ "$OSTYPE" == "darwin"* ]]; then
11
+ PACK_MGR="brew install"
12
+ elif command -v emerge &> /dev/null; then
13
+ PACK_MGR="sudo emerge"
14
+ elif command -v dnf &> /dev/null; then
15
+ PACK_MGR="sudo dnf install"
16
+ PACK_MGR_OPTIONS="-y"
17
+ elif command -v yum &> /dev/null; then
18
+ PACK_MGR="sudo yum install"
19
+ PACK_MGR_OPTIONS="-y"
20
+ elif command -v zypper &> /dev/null; then
21
+ PACK_MGR="sudo zypper install"
22
+ PACK_MGR_OPTIONS="-y"
23
+ elif command -v pacman &> /dev/null; then
24
+ PACK_MGR="sudo pacman -Sy"
25
+ elif command -v apt-get &> /dev/null; then
26
+ sudo apt-get update
27
+ PACK_MGR="sudo apt-get install"
28
+ PACK_MGR_OPTIONS="-y"
29
+ elif command -v apk &> /dev/null; then
30
+ PACK_MGR="sudo apk add"
31
+ fi
32
+
33
+ check_programs_installed() {
34
+ local programs=("$@")
35
+ declare -a programs_missing
36
+
37
+ for program in "${programs[@]}"; do
38
+ if command -v "$program" >/dev/null 2>&1; then
39
+ echo "$program is installed."
40
+ else
41
+ echo "$program is not installed."
42
+ programs_missing+=($program)
43
+ fi
44
+ done
45
+
46
+ local count=${#programs_missing[@]}
47
+
48
+ if [[ $count -eq 0 || "$PKG_MGR" = "" ]]; then
49
+ DOCKER_UTILS_NEEDED=true
50
+ else
51
+ for program in "${programs_missing[@]}"; do
52
+ if [ "$program" = "ffmpeg" ];then
53
+ eval "$PKG_MGR ffmpeg $PKG_MGR_OPTIONS"
54
+ if command -v ffmpeg >/dev/null 2>&1; then
55
+ echo "FFmpeg installed successfully!"
56
+ else
57
+ echo "FFmpeg installation failed."
58
+ DOCKER_UTILS_NEEDED=true
59
+ break
60
+ fi
61
+ elif [ "$program" = "calibre" ];then
62
+ # avoid conflict with calibre builtin lxml
63
+ pip uninstall lxml -y 2>/dev/null
64
+
65
+ if [[ "$OSTYPE" == "Linux" ]]; then
66
+ echo "Installing Calibre for Linux..."
67
+ $WGET -nv -O- https://download.calibre-ebook.com/linux-installer.sh | sh /dev/stdin
68
+ elif [[ "$OSTYPE" == "Darwin"* ]]; then
69
+ echo "Installing Calibre for macOS using Homebrew..."
70
+ eval "$PACK_MGR --cask calibre"
71
+ fi
72
+
73
+ if command -v calibre >/dev/null 2>&1; then
74
+ echo "Calibre installed successfully!"
75
+ else
76
+ echo "Calibre installation failed."
77
+ fi
78
+ fi
79
+ done
80
+ fi
81
+ }
82
+
83
+ # Check for Homebrew on macOS
84
+ if [[ "$OSTYPE" == "darwin"* ]]; then
85
+ echo "Detected macOS."
86
+ if ! command -v brew &> /dev/null; then
87
+ echo "Homebrew is not installed. Installing Homebrew..."
88
+ /usr/bin/env bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
89
+ echo 'eval "$(/opt/homebrew/bin/brew shellenv)"' >> ~/.zprofile
90
+ eval "$(/opt/homebrew/bin/brew shellenv)"
91
+ fi
92
+ fi
93
+
94
+ if [ -z "$WGET" ]; then
95
+ echo -e "\e[33m wget is missing! trying to install it... \e[0m"
96
+ if [ "$PACK_MGR" != "" ]; then
97
+ eval "$PACK_MGR wget $PACK_MGR_OPTIONS"
98
+ else
99
+ echo "Cannot recognize your package manager. Please install wget manually."
100
+ fi
101
+ WGET=$(which wget 2>/dev/null)
102
+ fi
103
+
104
+ if [[ -n "$WGET" && -z "$CONDA_VERSION" ]]; then
105
+ echo -e "\e[33m conda is missing! trying to install it... \e[0m"
106
+
107
+ if [[ "$OSTYPE" == "darwin"* ]]; then
108
+ $WGET https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -O Miniconda3-latest.sh
109
+ else
110
+ $WGET https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O Miniconda3-latest.sh
111
+ fi
112
+
113
+ chmod +x Miniconda3-latest.sh
114
+ ./Miniconda3-latest.sh -b -u && \
115
+ ~/miniconda3/bin/conda init && \
116
+ rm -f Miniconda3-latest.sh
117
+
118
+ # Source the appropriate shell configuration file
119
+ SHELL_RC=~/miniconda3/etc/profile.d/conda.sh
120
+ source $SHELL_RC
121
+
122
+ CONDA_VERSION=$(conda --version 2>/dev/null)
123
+ echo -e "\e[32m===============>>> conda is installed! <<===============\e[0m"
124
+ fi
125
+
126
+ check_programs_installed()
127
+
128
+ if [ $DOCKER_UTILS_NEEDED = true ]; then
129
+ if [[ -n "$WGET" && -z "$DOCKER_UTILS" ]]; then
130
+ echo -e "\e[33m docker is missing! trying to install it... \e[0m"
131
+ if [[ "$OSTYPE" == "darwin"* ]]; then
132
+ echo "Installing Docker using Homebrew..."
133
+ brew install --cask docker
134
+ else
135
+ $WGET -qO get-docker.sh https://get.docker.com && \
136
+ sudo sh get-docker.sh && \
137
+ sudo systemctl start docker && \
138
+ sudo systemctl enable docker && \
139
+ docker run hello-world && \
140
+ DOCKER_UTILS=$(which docker 2>/dev/null)
141
+ rm -f get-docker.sh
142
+ fi
143
+ echo -e "\e[32m===============>>> docker is installed! <<===============\e[0m"
144
+ fi
145
+ fi
146
+
147
+ if [[ -n "$WGET" && -n "$CONDA_VERSION" ]]; then
148
+ SHELL_RC=~/miniconda3/etc/profile.d/conda.sh
149
+ echo -e "\e[33m Installing ebook2audiobook... \e[0m"
150
+ if [ $DOCKER_UTILS_NEEDED = true ]; then
151
+ conda create --prefix $(pwd)/python_env python=3.11 -y
152
+ source $SHELL_RC
153
+ conda activate $(pwd)/python_env
154
+ $DOCKER_UTILS build -f DockerfileUtils -t utils .
155
+ fi
156
+ pip install --upgrade pip && \
157
+ pip install pydub nltk beautifulsoup4 ebooklib translate coqui-tts tqdm mecab mecab-python3 unidic gradio>=4.44.0 docker && \
158
+ python -m unidic download && \
159
+ python -m spacy download en_core_web_sm && \
160
+ pip install -e .
161
+ if [ $DOCKER_UTILS_NEEDED = true ]; then
162
+ conda deactivate
163
+ conda deactivate
164
+ fi
165
+ echo -e "\e[32m******************* ebook2audiobook installation successful! *******************\e[0m"
166
+ echo -e "\e[33mTo launch ebook2audiobook:\e[0m"
167
+ echo -e "- in command line mode: ./ebook2audiobook.sh --headless [other options]"
168
+ echo -e "- in graphic web mode: ./ebook2audiobook.sh [--share]"
169
+ fi
170
+
171
+ exit 0
legacy/v1.0/readme/README_CN.md ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 📚 ebook2audiobook
2
+
3
+ 使用Calibre和Coqui XTTS将电子书转换为包含章节和元数据的有声读物。支持可选的语音克隆和多种语言!
4
+
5
+ #### 🖥️ Web GUI界面
6
+ ![demo_web_gui](https://github.com/user-attachments/assets/85af88a7-05dd-4a29-91de-76a14cf5ef06)
7
+
8
+ <details>
9
+ <summary>点击查看Web GUI的图片</summary>
10
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/b36c71cf-8e06-484c-a252-934e6b1d0c2f">
11
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/c0dab57a-d2d4-4658-bff9-3842ec90cb40">
12
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/0a99eeac-c521-4b21-8656-e064c1adc528">
13
+ </details>
14
+
15
+ ## 🌟 特征
16
+
17
+ - 📖 使用Calibre将电子书转换为文本格式。
18
+ - 📚 将电子书拆分为章节,以获得有组织的音频。
19
+ - 🎙️ 使用Coqui XTTS实现高质量的文本到语音转换。
20
+ - 🗣️ 可选择使用您自己的语音文件进行语音克隆。
21
+ - 🌍 支持多种语言(默认为英语)。
22
+ - 🖥️ 基于4GB RAM运行。
23
+
24
+ ## 🛠️ 环境要求
25
+
26
+ - Python 3.10
27
+ - `coqui-tts` Python package
28
+ - Calibre (用于电子书转换)
29
+ - FFmpeg (用于有声读物创作)
30
+ - Optional: 用于语音克隆的自定义语音文件
31
+
32
+ ### 🔧 安装说明
33
+
34
+ 1. **安装 Python 3.x** from [Python.org](https://www.python.org/downloads/).
35
+
36
+ 2. **安装 Calibre**:
37
+ - **Ubuntu**: `sudo apt-get install -y calibre`
38
+ - **macOS**: `brew install calibre`
39
+ - **Windows** (Admin Powershell): `choco install calibre`
40
+
41
+ 3. **安装 FFmpeg**:
42
+ - **Ubuntu**: `sudo apt-get install -y ffmpeg`
43
+ - **macOS**: `brew install ffmpeg`
44
+ - **Windows** (Admin Powershell): `choco install ffmpeg`
45
+
46
+ 4. **可选: Install Mecab** (非拉丁语言):
47
+ - **Ubuntu**: `sudo apt-get install -y mecab libmecab-dev mecab-ipadic-utf8`
48
+ - **macOS**: `brew install mecab`, `brew install mecab-ipadic`
49
+ - **Windows**: [mecab-website-to-install-manually](https://taku910.github.io/mecab/#download) (注:日语支持有限)
50
+
51
+ 5. **安装 Python packages**:
52
+ ```bash
53
+ pip install coqui-tts==0.24.2 pydub nltk beautifulsoup4 ebooklib tqdm gradio==4.44.0
54
+
55
+ python -m nltk.downloader punkt
56
+ python -m nltk.downloader punkt_tab
57
+ ```
58
+
59
+ **For non-Latin languages**:
60
+ ```bash
61
+ pip install mecab mecab-python3 unidic
62
+
63
+ python -m unidic download
64
+ ```
65
+
66
+ ## 🌐 支持的语言
67
+
68
+ - **English (en)**
69
+ - **Spanish (es)**
70
+ - **French (fr)**
71
+ - **German (de)**
72
+ - **Italian (it)**
73
+ - **Portuguese (pt)**
74
+ - **Polish (pl)**
75
+ - **Turkish (tr)**
76
+ - **Russian (ru)**
77
+ - **Dutch (nl)**
78
+ - **Czech (cs)**
79
+ - **Arabic (ar)**
80
+ - **Chinese (zh-cn)**
81
+ - **Japanese (ja)**
82
+ - **Hungarian (hu)**
83
+ - **Korean (ko)**
84
+
85
+ 在无头模式下运行脚本时指定语言代码。
86
+ ## 🚀 使用
87
+
88
+ ### 🖥️ 启动Gradio Web界面
89
+
90
+ 1. **运行脚本**:
91
+ ```bash
92
+ python app.py
93
+ ```
94
+
95
+ 2. **打开web应用程序**: 点击终端中提供的URL访问web应用程序并转换电子书.
96
+ 3. **公共链接**: 在末尾添加“--share True”,如下所示:`python app.py--share True`
97
+ - **[更多参数]**: 使用`-h`参数,如`python app.py-h`
98
+
99
+ ### 📝 基本的无头用法
100
+
101
+ ```bash
102
+ python app.py --headless True --ebook <path_to_ebook_file> --voice [path_to_voice_file] --language [language_code]
103
+ ```
104
+
105
+ - **<path_to_ebook_file>**: 电子书文件的路径。
106
+ - **[path_to_voice_file]**: 指定转换的语音文件,可选。
107
+ - **[language_code]**: 指定转换的语言,可选。
108
+ - **[更多参数]**: 使用 `-h` 参数,如 `python app.py -h`
109
+
110
+ ### 🧩 自定义XTTS模型的无头用法
111
+
112
+ ```bash
113
+ python app.py --headless True --use_custom_model True --ebook <ebook_file_path> --voice <target_voice_file_path> --language <language> --custom_model <custom_model_path> --custom_config <custom_config_path> --custom_vocab <custom_vocab_path>
114
+ ```
115
+
116
+ - **<ebook_file_path>**: 电子书文件的路径。
117
+ - **<target_voice_file_path>**: 指定转换的语音文件,可选。
118
+ - **<language>**: 指定转换的语言,可选。
119
+ - **<custom_model_path>**: `model.pth`的路径。
120
+ - **<custom_config_path>**: `config.json`的路径。
121
+ - **<custom_vocab_path>**: `vocab.json`的路径。
122
+ - **[更多参数]**: 使用 `-h` 参数,如 `python app.py -h`
123
+
124
+ ### 🧩 自定义XTTS Fine-Tune 模型的无头用法 🌐
125
+
126
+ ```bash
127
+ python app.py --headless True --use_custom_model True --ebook <ebook_file_path> --voice <target_voice_file_path> --language <language> --custom_model_url <custom_model_URL_ZIP_path>
128
+ ```
129
+
130
+ - **<ebook_file_path>**: 电子书文件的路径。
131
+ - **<target_voice_file_path>**: 指定转换的语音文件,可选。
132
+ - **<language>**: 指定转换的语言,可选。
133
+ - **<custom_model_URL_ZIP_path>**: 模型文件夹压缩包的URL路径。例如
134
+ [xtts_David_Attenborough_fine_tune](https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/tree/main) `https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/resolve/main/Finished_model_files.zip?download=true`
135
+ - **[更多参数]**: 使用 `-h` 参数,如 `python app.py -h`
136
+
137
+ ### 🔍 详细指南,包括所有要使用的参数列表
138
+ ```bash
139
+ python app.py -h
140
+ ```
141
+ - 这将输出以下内容:
142
+ ```bash
143
+ usage: app.py [-h] [--share SHARE] [--headless HEADLESS] [--ebook EBOOK] [--voice VOICE]
144
+ [--language LANGUAGE] [--use_custom_model USE_CUSTOM_MODEL]
145
+ [--custom_model CUSTOM_MODEL] [--custom_config CUSTOM_CONFIG]
146
+ [--custom_vocab CUSTOM_VOCAB] [--custom_model_url CUSTOM_MODEL_URL]
147
+ [--temperature TEMPERATURE] [--length_penalty LENGTH_PENALTY]
148
+ [--repetition_penalty REPETITION_PENALTY] [--top_k TOP_K] [--top_p TOP_P]
149
+ [--speed SPEED] [--enable_text_splitting ENABLE_TEXT_SPLITTING]
150
+
151
+ Convert eBooks to Audiobooks using a Text-to-Speech model. You can either launch the
152
+ Gradio interface or run the script in headless mode for direct conversion.
153
+
154
+ options:
155
+ -h, --help show this help message and exit
156
+ --share SHARE Set to True to enable a public shareable Gradio link. Defaults
157
+ to False.
158
+ --headless HEADLESS Set to True to run in headless mode without the Gradio
159
+ interface. Defaults to False.
160
+ --ebook EBOOK Path to the ebook file for conversion. Required in headless
161
+ mode.
162
+ --voice VOICE Path to the target voice file for TTS. Optional, uses a default
163
+ voice if not provided.
164
+ --language LANGUAGE Language for the audiobook conversion. Options: en, es, fr, de,
165
+ it, pt, pl, tr, ru, nl, cs, ar, zh-cn, ja, hu, ko. Defaults to
166
+ English (en).
167
+ --use_custom_model USE_CUSTOM_MODEL
168
+ Set to True to use a custom TTS model. Defaults to False. Must
169
+ be True to use custom models, otherwise you'll get an error.
170
+ --custom_model CUSTOM_MODEL
171
+ Path to the custom model file (.pth). Required if using a custom
172
+ model.
173
+ --custom_config CUSTOM_CONFIG
174
+ Path to the custom config file (config.json). Required if using
175
+ a custom model.
176
+ --custom_vocab CUSTOM_VOCAB
177
+ Path to the custom vocab file (vocab.json). Required if using a
178
+ custom model.
179
+ --custom_model_url CUSTOM_MODEL_URL
180
+ URL to download the custom model as a zip file. Optional, but
181
+ will be used if provided. Examples include David Attenborough's
182
+ model: 'https://huggingface.co/drewThomasson/xtts_David_Attenbor
183
+ ough_fine_tune/resolve/main/Finished_model_files.zip?download=tr
184
+ ue'. More XTTS fine-tunes can be found on my Hugging Face at
185
+ 'https://huggingface.co/drewThomasson'.
186
+ --temperature TEMPERATURE
187
+ Temperature for the model. Defaults to 0.65. Higher Tempatures
188
+ will lead to more creative outputs IE: more Hallucinations.
189
+ Lower Tempatures will be more monotone outputs IE: less
190
+ Hallucinations.
191
+ --length_penalty LENGTH_PENALTY
192
+ A length penalty applied to the autoregressive decoder. Defaults
193
+ to 1.0. Not applied to custom models.
194
+ --repetition_penalty REPETITION_PENALTY
195
+ A penalty that prevents the autoregressive decoder from
196
+ repeating itself. Defaults to 2.0.
197
+ --top_k TOP_K Top-k sampling. Lower values mean more likely outputs and
198
+ increased audio generation speed. Defaults to 50.
199
+ --top_p TOP_P Top-p sampling. Lower values mean more likely outputs and
200
+ increased audio generation speed. Defaults to 0.8.
201
+ --speed SPEED Speed factor for the speech generation. IE: How fast the
202
+ Narrerator will speak. Defaults to 1.0.
203
+ --enable_text_splitting ENABLE_TEXT_SPLITTING
204
+ Enable splitting text into sentences. Defaults to True.
205
+
206
+ Example: python script.py --headless --ebook path_to_ebook --voice path_to_voice
207
+ --language en --use_custom_model True --custom_model model.pth --custom_config
208
+ config.json --custom_vocab vocab.json
209
+ ```
210
+
211
+ <details>
212
+ <summary>⚠️ 遗留的旧版使用说明</summary>
213
+
214
+ ## 🚀 使用
215
+
216
+ ----> `ebook2audiobookXTTS/legacy/`
217
+
218
+ ### 🖥️ Web界面
219
+
220
+ 1. **运行脚本**:
221
+ ```bash
222
+ python custom_model_ebook2audiobookXTTS_gradio.py
223
+ ```
224
+
225
+ 2. **打开web应用程序**: 单击终端中提供的URL以访问web应用程序并转换电子书。
226
+
227
+ ### 📝 基础用法
228
+
229
+ ```bash
230
+ python ebook2audiobook.py <path_to_ebook_file> [path_to_voice_file] [language_code]
231
+ ```
232
+
233
+ - **<path_to_ebook_file>**: 电子书文件的路径。
234
+ - **[path_to_voice_file]**: 指定转换的语音文件,可选。
235
+ - **[language_code]**: 指定转换的语言,可选。
236
+
237
+ ### 🧩 自定义XTTS模型
238
+
239
+ ```bash
240
+ python custom_model_ebook2audiobookXTTS.py <ebook_file_path> <target_voice_file_path> <language> <custom_model_path> <custom_config_path> <custom_vocab_path>
241
+ ```
242
+
243
+ - **<ebook_file_path>**: 电子书文件的路径。
244
+ - **<target_voice_file_path>**: 指定转换的语音文件,可选。
245
+ - **<language>**: 指定转换的语言,可选。
246
+ - **<custom_model_path>**: `model.pth`的路径。
247
+ - **<custom_config_path>**: `config.json`的路径。
248
+ - **<custom_vocab_path>**: `vocab.json`的路径。
249
+ </details>
250
+
251
+ ### 🐳 使用Docker
252
+
253
+ 您还可以使用Docker运行电子书到有声读物的转换器。这种方法确保了不同环境之间的一致性,并简化了设置。
254
+
255
+ #### 🚀 运行Docker容器
256
+
257
+ 要运行Docker容器并启动Gradio接口,请使用以下命令:
258
+
259
+ -仅使用CPU运行
260
+ ```powershell
261
+ docker run -it --rm -p 7860:7860 --platform=linux/amd64 athomasson2/ebook2audiobookxtts:huggingface python app.py
262
+ ```
263
+ -使用GPU加速运行(仅限Nvida显卡)
264
+ ```powershell
265
+ docker run -it --rm --gpus all -p 7860:7860 --platform=linux/amd64 athomasson2/ebook2audiobookxtts:huggingface python app.py
266
+ ```
267
+
268
+ 此命令将启动7860端口上的Gradio接口(localhost:7860)
269
+ - 对于更多选项,如以无头模式运行docker或公开gradio链接,请在docker启动命令中的`app.py`后添加`-h`参数
270
+ <details>
271
+ <summary><strong>在无头模式下使用docker或使用额外参数修改任何内容的示例+完整指南</strong></summary>
272
+
273
+ ## 在无头模式下使用docker的示例
274
+
275
+ 首先是docker pull的最新版本
276
+ ```bash
277
+ docker pull athomasson2/ebook2audiobookxtts:huggingface
278
+ ```
279
+
280
+ - 在运行此命令之前,您需要在当前目录中创建一个名为“input folder”的目录,该目录将被链接,您可以在此处放置docker镜像的输入文件
281
+ ```bash
282
+ mkdir input-folder && mkdir Audiobooks
283
+ ```
284
+
285
+ - 运行下面命令需要将 **YOUR_INPUT_FILE.TXT** 替换为您创建的输入文件的名称
286
+
287
+ ```bash
288
+ docker run -it --rm \
289
+ -v $(pwd)/input-folder:/home/user/app/input_folder \
290
+ -v $(pwd)/Audiobooks:/home/user/app/Audiobooks \
291
+ --platform linux/amd64 \
292
+ athomasson2/ebook2audiobookxtts:huggingface \
293
+ python app.py --headless True --ebook /home/user/app/input_folder/YOUR_INPUT_FILE.TXT
294
+ ```
295
+
296
+ - 应该就是这样了!
297
+
298
+ - 输出Audiobooks将在Audiobook文件夹中找到,该文件夹也位于您运行此docker命令的本地目录中
299
+
300
+
301
+ ## 要获取此程序中其他参数的帮助命令,可以运行以下命令
302
+
303
+ ```bash
304
+ docker run -it --rm \
305
+ --platform linux/amd64 \
306
+ athomasson2/ebook2audiobookxtts:huggingface \
307
+ python app.py -h
308
+
309
+ ```
310
+
311
+
312
+ 这将输出以下内容
313
+
314
+ ```bash
315
+ user/app/ebook2audiobookXTTS/input-folder -v $(pwd)/Audiobooks:/home/user/app/ebook2audiobookXTTS/Audiobooks --memory="4g" --network none --platform linux/amd64 athomasson2/ebook2audiobookxtts:huggingface python app.py -h
316
+ starting...
317
+ usage: app.py [-h] [--share SHARE] [--headless HEADLESS] [--ebook EBOOK] [--voice VOICE]
318
+ [--language LANGUAGE] [--use_custom_model USE_CUSTOM_MODEL]
319
+ [--custom_model CUSTOM_MODEL] [--custom_config CUSTOM_CONFIG]
320
+ [--custom_vocab CUSTOM_VOCAB] [--custom_model_url CUSTOM_MODEL_URL]
321
+ [--temperature TEMPERATURE] [--length_penalty LENGTH_PENALTY]
322
+ [--repetition_penalty REPETITION_PENALTY] [--top_k TOP_K] [--top_p TOP_P]
323
+ [--speed SPEED] [--enable_text_splitting ENABLE_TEXT_SPLITTING]
324
+
325
+ Convert eBooks to Audiobooks using a Text-to-Speech model. You can either launch the
326
+ Gradio interface or run the script in headless mode for direct conversion.
327
+
328
+ options:
329
+ -h, --help show this help message and exit
330
+ --share SHARE Set to True to enable a public shareable Gradio link. Defaults
331
+ to False.
332
+ --headless HEADLESS Set to True to run in headless mode without the Gradio
333
+ interface. Defaults to False.
334
+ --ebook EBOOK Path to the ebook file for conversion. Required in headless
335
+ mode.
336
+ --voice VOICE Path to the target voice file for TTS. Optional, uses a default
337
+ voice if not provided.
338
+ --language LANGUAGE Language for the audiobook conversion. Options: en, es, fr, de,
339
+ it, pt, pl, tr, ru, nl, cs, ar, zh-cn, ja, hu, ko. Defaults to
340
+ English (en).
341
+ --use_custom_model USE_CUSTOM_MODEL
342
+ Set to True to use a custom TTS model. Defaults to False. Must
343
+ be True to use custom models, otherwise you'll get an error.
344
+ --custom_model CUSTOM_MODEL
345
+ Path to the custom model file (.pth). Required if using a custom
346
+ model.
347
+ --custom_config CUSTOM_CONFIG
348
+ Path to the custom config file (config.json). Required if using
349
+ a custom model.
350
+ --custom_vocab CUSTOM_VOCAB
351
+ Path to the custom vocab file (vocab.json). Required if using a
352
+ custom model.
353
+ --custom_model_url CUSTOM_MODEL_URL
354
+ URL to download the custom model as a zip file. Optional, but
355
+ will be used if provided. Examples include David Attenborough's
356
+ model: 'https://huggingface.co/drewThomasson/xtts_David_Attenbor
357
+ ough_fine_tune/resolve/main/Finished_model_files.zip?download=tr
358
+ ue'. More XTTS fine-tunes can be found on my Hugging Face at
359
+ 'https://huggingface.co/drewThomasson'.
360
+ --temperature TEMPERATURE
361
+ Temperature for the model. Defaults to 0.65. Higher Tempatures
362
+ will lead to more creative outputs IE: more Hallucinations.
363
+ Lower Tempatures will be more monotone outputs IE: less
364
+ Hallucinations.
365
+ --length_penalty LENGTH_PENALTY
366
+ A length penalty applied to the autoregressive decoder. Defaults
367
+ to 1.0. Not applied to custom models.
368
+ --repetition_penalty REPETITION_PENALTY
369
+ A penalty that prevents the autoregressive decoder from
370
+ repeating itself. Defaults to 2.0.
371
+ --top_k TOP_K Top-k sampling. Lower values mean more likely outputs and
372
+ increased audio generation speed. Defaults to 50.
373
+ --top_p TOP_P Top-p sampling. Lower values mean more likely outputs and
374
+ increased audio generation speed. Defaults to 0.8.
375
+ --speed SPEED Speed factor for the speech generation. IE: How fast the
376
+ Narrerator will speak. Defaults to 1.0.
377
+ --enable_text_splitting ENABLE_TEXT_SPLITTING
378
+ Enable splitting text into sentences. Defaults to True.
379
+
380
+ Example: python script.py --headless --ebook path_to_ebook --voice path_to_voice
381
+ --language en --use_custom_model True --custom_model model.pth --custom_config
382
+ config.json --custom_vocab vocab.json
383
+ ```
384
+ </details>
385
+
386
+ #### 🖥️ Docker图形用户界面
387
+ ![demo_web_gui](https://github.com/user-attachments/assets/85af88a7-05dd-4a29-91de-76a14cf5ef06)
388
+
389
+ <details>
390
+ <summary>点击查看Web界面的图片</summary>
391
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/b36c71cf-8e06-484c-a252-934e6b1d0c2f">
392
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/c0dab57a-d2d4-4658-bff9-3842ec90cb40">
393
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/0a99eeac-c521-4b21-8656-e064c1adc528">
394
+ </details>
395
+
396
+ ### 🛠️ 关于自定义XTTS模型
397
+
398
+ 为更好地处理特定声音而构建的模型。查看我的Hugging Face页面 [here](https://huggingface.co/drewThomasson).
399
+
400
+ 要使用自定义模型,请粘贴“Finished_model_files.zip”文件的链接,如下所示:
401
+
402
+ [David Attenborough fine tuned Finished_model_files.zip](https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/resolve/main/Finished_model_files.zip?download=true)
403
+
404
+
405
+
406
+
407
+ 更多详细信息请访问 [Dockerfile Hub Page]([https://github.com/DrewThomasson/ebook2audiobookXTTS](https://hub.docker.com/repository/docker/athomasson2/ebook2audiobookxtts/general)).
408
+
409
+ ## 🌐 微调XTTS模型
410
+
411
+ 要查找已经过微调的XTTS型号,请访问[Hugging Face](https://huggingface.co/drewThomasson) 🌐. 模型搜索需要包含“xtts fine tune”的关键字。
412
+
413
+ ## 🎥 Demos
414
+
415
+ https://github.com/user-attachments/assets/8486603c-38b1-43ce-9639-73757dfb1031
416
+
417
+ ## 🤗 [Huggingface space demo](https://huggingface.co/spaces/drewThomasson/ebook2audiobookXTTS)
418
+ - Huggingface空间正在空闲cpu层上运行,所以预计会非常慢或超时,哈哈,只是不要给它大文件
419
+ - 最好复制空间或在本地运行。
420
+ ## 📚 支持的电子书格式
421
+
422
+ - `.epub`, `.pdf`, `.mobi`, `.txt`, `.html`, `.rtf`, `.chm`, `.lit`, `.pdb`, `.fb2`, `.odt`, `.cbr`, `.cbz`, `.prc`, `.lrf`, `.pml`, `.snb`, `.cbc`, `.rb`, `.tcr`
423
+ - **最佳结果**: `.epub` 或者 `.mobi`格式可以进行自动章节检测。
424
+
425
+ ## 📂 输出
426
+
427
+ - 创建一个包含元数据和章节的“.m4b”文件。
428
+ - **例子**: ![Example](https://github.com/DrewThomasson/VoxNovel/blob/dc5197dff97252fa44c391dc0596902d71278a88/readme_files/example_in_app.jpeg)
legacy/v1.0/readme/README_RU.md ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 📚 ebook2audiobook
2
+
3
+ Конвертация электронных книг в аудиокниги с сохранением глав и метаданных, используются механизмы Calibre и XTTS. Поддерживаются опциональное клонирование голоса и множественные языки!
4
+
5
+
6
+ #### 🖥️ Web-интерфейс
7
+ ![demo_web_gui](https://github.com/user-attachments/assets/85af88a7-05dd-4a29-91de-76a14cf5ef06)
8
+
9
+ <details>
10
+ <summary>Больше картинок Web-интерфейса</summary>
11
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/b36c71cf-8e06-484c-a252-934e6b1d0c2f">
12
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/c0dab57a-d2d4-4658-bff9-3842ec90cb40">
13
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/0a99eeac-c521-4b21-8656-e064c1adc528">
14
+ </details>
15
+
16
+ ## README.md
17
+ - en [English](README.md)
18
+ - zh_CN [简体中文](readme/README_CN.md)
19
+ - ru [Русский](readme/README_RU.md)
20
+
21
+
22
+ ## 🌟 Возможности
23
+
24
+ - 📖 Преобразование электронных книг в текстовый формат при помощи Calibre.
25
+ - 📚 Разбитие электронных книг по главам для аудиоформата.
26
+ - 🎙️ Высококачественное преобразование текста в голос при помощи Coqui XTTS.
27
+ - 🗣️ Опциональное клонирование голоса на основе вашего голосового файла.
28
+ - 🌍 Многоязыковая поддержка (английский по умолчанию).
29
+ - 🖥️ Для работы достаточно всего 4 Гб ОЗУ.
30
+
31
+ ## 🤗 [Демонстрация на HuggingFace](https://huggingface.co/spaces/drewThomasson/ebook2audiobookXTTS)
32
+ - Пространство на HuggingFace работает на бесплатном процессорном уровне, посему не стоит ожидать от него высокой скорости обработки или отсутствия сообщений о таймаутах. Даже и не пытайтесь обработать большие файлы.
33
+ - Лучше всего скопировать пространство или запустить приложение локально.
34
+
35
+ ## Бесплатный Google Colab [![Бесплатный Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DrewThomasson/ebook2audiobookXTTS/blob/main/Notebooks/colab_ebook2audiobookxtts.ipynb)
36
+
37
+
38
+ ## 🛠️ Требования
39
+
40
+ - Python 3.10
41
+ - `coqui-tts` Python package
42
+ - Calibre (для конвертации электронных книг)
43
+ - FFmpeg (для создания аудиокниг)
44
+ - Опционально: собственный файл с голосом для начитки
45
+
46
+
47
+ ### 🔧 Установка
48
+
49
+ 1. **Установить Python 3.x** из [Python.org](https://www.python.org/downloads/).
50
+
51
+ 2. **Установить Calibre**:
52
+ - **Ubuntu**: `sudo apt-get install -y calibre`
53
+ - **macOS**: `brew install calibre`
54
+ - **Windows** (Admin Powershell): `choco install calibre`
55
+
56
+ 3. **Установить FFmpeg**:
57
+ - **Ubuntu**: `sudo apt-get install -y ffmpeg`
58
+ - **macOS**: `brew install ffmpeg`
59
+ - **Windows** (Admin Powershell): `choco install ffmpeg`
60
+
61
+ 4. **Опционально: установить Mecab** (для нелатинских языков):
62
+ - **Ubuntu**: `sudo apt-get install -y mecab libmecab-dev mecab-ipadic-utf8`
63
+ - **macOS**: `brew install mecab`, `brew install mecab-ipadic`
64
+ - **Windows**: [mecab-website-to-install-manually](https://taku910.github.io/mecab/#download) (Замечание: японский язык поддерживается ограниченно)
65
+
66
+ 5. **Установить пакеты Python**:
67
+ ```bash
68
+ pip install coqui-tts==0.24.2 pydub nltk beautifulsoup4 ebooklib tqdm gradio==4.44.0
69
+
70
+ python -m nltk.downloader punkt
71
+ python -m nltk.downloader punkt_tab
72
+ ```
73
+
74
+ **Для нелатинских языков**:
75
+ ```bash
76
+ pip install mecab mecab-python3 unidic
77
+
78
+ python -m unidic download
79
+ ```
80
+
81
+ ## 🌐 Поддерживаемые языки
82
+
83
+ - **English (en)**
84
+ - **Spanish (es)**
85
+ - **French (fr)**
86
+ - **German (de)**
87
+ - **Italian (it)**
88
+ - **Portuguese (pt)**
89
+ - **Polish (pl)**
90
+ - **Turkish (tr)**
91
+ - **Russian (ru)**
92
+ - **Dutch (nl)**
93
+ - **Czech (cs)**
94
+ - **Arabic (ar)**
95
+ - **Chinese (zh-cn)**
96
+ - **Japanese (ja)**
97
+ - **Hungarian (hu)**
98
+ - **Korean (ko)**
99
+
100
+ Указывайте код нужного языка при запуске в безинтерфейсном режиме (в командной строке).
101
+ ## 🚀 Использование
102
+
103
+ ### 🖥️ За��уск Gradio Web-интерфейса
104
+
105
+ 1. **Запустите скрипт**:
106
+ ```bash
107
+ python app.py
108
+ ```
109
+
110
+ 2. **Откройте Web-приложение**: нажмите на ссылку появившуюся в окне терминала для доступа к Web-приложению и конвертированию электронных книг.
111
+ 3. **Для доступа из сети**: добавьте `--share True` в конец команды, наподобие: `python app.py --share True`
112
+ - **[Для большего количества параметров]**: используйте `-h` ключ, наподобие: `python app.py -h`
113
+
114
+ ### 📝 Типовое использование в безинтерфейсном режиме
115
+
116
+ ```bash
117
+ python app.py --headless True --ebook <path_to_ebook_file> --voice [path_to_voice_file] --language [language_code]
118
+ ```
119
+
120
+ - **<path_to_ebook_file>**: путь к файлу электронной книги.
121
+ - **[path_to_voice_file]**: путь к примеру голоса, для опционального клонирования голоса для начитки.
122
+ - **[language_code]**: по желанию, выбрать язык.
123
+ - **[Для большего количества параметров]**: используйте `-h` ключ, наподобие `python app.py -h`
124
+
125
+ ### 🧩 Безинтерфейсное использование с индивиуальной моделью XTTS
126
+
127
+ ```bash
128
+ python app.py --headless True --use_custom_model True --ebook <ebook_file_path> --voice <target_voice_file_path> --language <language> --custom_model <custom_model_path> --custom_config <custom_config_path> --custom_vocab <custom_vocab_path>
129
+ ```
130
+
131
+ - **<ebook_file_path>**: путь к файлу электронной книги.
132
+ - **<target_voice_file_path>**: путь к примеру голоса, для опционального клонирования.
133
+ - **\<language>**: по желанию, выбрать язык.
134
+ - **<custom_model_path>**: путь к `model.pth`.
135
+ - **<custom_config_path>**: путь к `config.json`.
136
+ - **<custom_vocab_path>**: путь к `vocab.json`.
137
+ - **[Для большего количества параметров]**: используйте `-h` ключ, наподобие `python app.py -h`
138
+
139
+
140
+ ### 🧩 Безинтерфейсное использование с индивидуальной моделью XTTS со ссылкой на Zip-архив, содержащий модель тонкой настройки XTTS 🌐
141
+
142
+ ```bash
143
+ python app.py --headless True --use_custom_model True --ebook <ebook_file_path> --voice <target_voice_file_path> --language <language> --custom_model_url <custom_model_URL_ZIP_path>
144
+ ```
145
+
146
+ - **<ebook_file_path>**: путь к файлу eBook.
147
+ - **<target_voice_file_path>**: путь к примеру голоса, для опционального клонирования.
148
+ - **\<language>**: по желанию, выбрать язык.
149
+ - **<custom_model_URL_ZIP_path>**: путь в виде URL к архиву формата zip с папкой модели. Например, [xtts_David_Attenborough_fine_tune](https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/tree/main) `https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/resolve/main/Finished_model_files.zip?download=true`
150
+ - Для индивидуальной модели все равно потребуется референсный аудиофайл с голосом:
151
+ [референсный аудиофайл с голосом David Attenborough](https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/blob/main/ref.wav)
152
+ - **[Для большего количества параметров]**: используйте `-h` ключ, наподобие `python app.py -h`
153
+
154
+ ### 🔍 Для подробного списка всех параметров используйте
155
+ ```bash
156
+ python app.py -h
157
+ ```
158
+ - Будет выведен примерно следующий список ключей:
159
+ ```bash
160
+ использование: app.py [-h] [--share SHARE] [--headless HEADLESS] [--ebook EBOOK] [--voice VOICE]
161
+ [--language LANGUAGE] [--use_custom_model USE_CUSTOM_MODEL]
162
+ [--custom_model CUSTOM_MODEL] [--custom_config CUSTOM_CONFIG]
163
+ [--custom_vocab CUSTOM_VOCAB] [--custom_model_url CUSTOM_MODEL_URL]
164
+ [--temperature TEMPERATURE] [--length_penalty LENGTH_PENALTY]
165
+ [--repetition_penalty REPETITION_PENALTY] [--top_k TOP_K] [--top_p TOP_P]
166
+ [--speed SPEED] [--enable_text_splitting ENABLE_TEXT_SPLITTING]
167
+
168
+ Преобразование электронных книг в аудиокниги с использованием модели Text-to-Speech (TTS). Вы можете либо использовать
169
+ интерфейс Gradio, либо запустить скрипт в безинтерфейсном режиме (командная строка) для прямого конвертирования.
170
+
171
+ опции:
172
+ -h, --help Отобразить этот список и выйти
173
+ --share SHARE Установить в True для включения публичного доступа к Web-интерфейсу Gradio. По умолчанию False.
174
+ --headless HEADLESS Установить в True для использования безинтерфейсного режима. По умолчанию False.
175
+ --ebook EBOOK Путь к электронной книге для конвертации. Необходимо для безинтерфейсного режима.
176
+ --voice VOICE Путь к целевому голосовому файлу для TTS (текст-в-голос). Опционально, используется голос по умолчанию, если путь не указан.
177
+ --language LANGUAGE Язык для конвертации в аудиокнигу. Варианты: en, es, fr, de,
178
+ it, pt, pl, tr, ru, nl, cs, ar, zh-cn, ja, hu, ko. По умолчанию English (en).
179
+ --use_custom_model USE_CUSTOM_MODEL
180
+ Установить в True для использования индивидуальной модели TTS. По умолчанию False. Необходимо переключить в
181
+ True для использования индивидуальной модели, в противном случае возникнет ошибка.
182
+ --custom_model CUSTOM_MODEL
183
+ Путь к файлу индивидуальной модели (.pth). Требуется, если используется индивидуальная модель.
184
+ --custom_config CUSTOM_CONFIG
185
+ Путь к конфигурационному файлу индивидуальной модели (config.json). Требуется, если используется индивидуальная модель.
186
+ --custom_vocab CUSTOM_VOCAB
187
+ Путь к словарю индивидуальной модели (vocab.json). Требуется, если используется индивидуальная модель.
188
+ --custom_model_url CUSTOM_MODEL_URL
189
+ URL для скачивания индивидуальной модели в виде zip-архива. Опционально, но если указано, то будет использовано.
190
+ Примеры включающие модель David Attenborough: 'https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/resolve/main/Finished_model_files.zip?download=true'. Больше точно-настроенных моделей XTTS можно найти на Hugging Face 'https://huggingface.co/drewThomasson'.
191
+ --temperature TEMPERATURE
192
+ Температура для модели. По умолчанию 0.65. Чем выше температура, тем более креативным будет синтез голоса, с большим наваждением. Чем меньше, тем более монотонным и спокойным.
193
+ --length_penalty LENGTH_PENALTY
194
+ Ограничение длины авторегрессионного декодера. По умолчанию 1.0. Не применяется к индивидуальным моделям.
195
+ --repetition_penalty REPETITION_PENALTY
196
+ Ограничение, предотвращающее повторение авторегрессивным декодером за собой. По умолчанию 2.0
197
+ --top_k TOP_K Сэмплирование Top-k. Меньшее значение приводит к более вероятностному выводу и ускоряют генерацию аудио. По умолчанию 50.
198
+ --top_p TOP_P Сэмплирование Top-p. Меньшее значение приводит к более вероятностному выводу и ускоряют генерацию аудио. По умолчанию 0.8.
199
+ --speed SPEED Фактор скорости начитки. Чем больше значение, тем быстрее диктор будет читать текст. По умолчанию 1.0.
200
+ --enable_text_splitting ENABLE_TEXT_SPLITTING
201
+ Включает разбиение текста на предложения. По умолчанию True.
202
+
203
+ Пример: python script.py --headless --ebook path_to_ebook --voice path_to_voice --language en --use_custom_model True --custom_model model.pth --custom_config config.json --custom_vocab vocab.json
204
+ ```
205
+
206
+
207
+
208
+ ### 🐳 Использование Docker
209
+
210
+ Помимо всего прочего, можн�� использовать Docker для использования конвертера электронных книг в аудиокниги. Этот метод обеспечивает согласованность в различных средах и упрощает настройку.
211
+
212
+ #### 🚀 Запуск контейнера Docker
213
+
214
+ Для запуска контейнера Docker и интерфейса Gradio используйте следующую команду:
215
+
216
+ -Запуск с использованием только CPU (процессора)
217
+ ```powershell
218
+ docker run -it --rm -p 7860:7860 --platform=linux/amd64 athomasson2/ebook2audiobookxtts:huggingface python app.py
219
+ ```
220
+ -Запуск с использованием ускорения на GPU (графической карты), поддерживаются только видеокарты NVIDIA
221
+ ```powershell
222
+ docker run -it --rm --gpus all -p 7860:7860 --platform=linux/amd64 athomasson2/ebook2audiobookxtts:huggingface python app.py
223
+ ```
224
+
225
+ Эта команда запускает интерфейс Gradio на порту 7860. (localhost:7860)
226
+ - Для получения большей информации о доступных командах в безинтерфейсном режиме или предоставление доступа к Gradio в сети, используйте ключ `-h` после имени команды `app.py` в терминале Docker
227
+ <details>
228
+ <summary><strong>Пример использования Docker в безинтерфейсном режиме или модификаций параметров + полный гид</strong></summary>
229
+
230
+ ## Пример использования Docker в безинтерфейсном режиме
231
+
232
+ - Сперва необходимо получить свежий контейнер с приложением
233
+ ```bash
234
+ docker pull athomasson2/ebook2audiobookxtts:huggingface
235
+ ```
236
+
237
+ - Прежде чем запустить команду на исполнение, необходимо создать директорию с именем "input-folder" в текущей папке, которая будет подтянута к использованию. В эту папку необходимо помещать файлы, которые будут видны образу Docker
238
+ ```bash
239
+ mkdir input-folder && mkdir Audiobooks
240
+ ```
241
+
242
+ - В команде ниже замените **YOUR_INPUT_FILE.TXT** именем файла, который необходимо начитать
243
+
244
+ ```bash
245
+ docker run -it --rm \
246
+ -v $(pwd)/input-folder:/home/user/app/input_folder \
247
+ -v $(pwd)/Audiobooks:/home/user/app/Audiobooks \
248
+ --platform linux/amd64 \
249
+ athomasson2/ebook2audiobookxtts:huggingface \
250
+ python app.py --headless True --ebook /home/user/app/input_folder/YOUR_INPUT_FILE.TXT
251
+ ```
252
+
253
+ - И на этом это всё!
254
+
255
+ - Начитанная аудиокнига будет сформирована в папке Audiobooks, которая будет создана в вашей локальной директории, в которой был осуществлен запуск Docker
256
+
257
+
258
+ ## Для получения помощи по параметрам, необходимо запустить следующую команду
259
+
260
+ ```bash
261
+ docker run -it --rm \
262
+ --platform linux/amd64 \
263
+ athomasson2/ebook2audiobookxtts:huggingface \
264
+ python app.py -h
265
+
266
+ ```
267
+
268
+
269
+ и вывод будет следующим
270
+
271
+ ```bash
272
+ user/app/ebook2audiobookXTTS/input-folder -v $(pwd)/Audiobooks:/home/user/app/ebook2audiobookXTTS/Audiobooks --memory="4g" --network none --platform linux/amd64 athomasson2/ebook2audiobookxtts:huggingface python app.py -h
273
+ starting...
274
+ Преобразование электронных книг в аудиокниги с использованием модели Text-to-Speech (TTS). Вы можете либо использовать
275
+ интерфейс Gradio, либо запустить скрипт в безинтерфейсном режиме (командная строка) для прямого конвертирования.
276
+
277
+ Опции:
278
+ -h, --help Отобразить этот список и выйти
279
+ --share SHARE Установить в True для включения публичного доступа к Web-интерфейсу Gradio. По умолчанию False.
280
+ --headless HEADLESS Установить в True для использования безинтерфейсного режима. По умолчанию False.
281
+ --ebook EBOOK Путь к электронной книге для конвертации. Необходимо для безинтерфейсного режима.
282
+ --voice VOICE Путь к целевому голосовому файлу для TTS (текст-в-голос). Опционально, используется голос по умолчанию, если путь не указан.
283
+ --language LANGUAGE Язык для конвертации в аудиокнигу. Варианты: en, es, fr, de,
284
+ it, pt, pl, tr, ru, nl, cs, ar, zh-cn, ja, hu, ko. По умолчанию English (en).
285
+ --use_custom_model USE_CUSTOM_MODEL
286
+ Установить в True для использования индивидуальной модели TTS. По умолчанию False. Необходимо переключить в
287
+ True для использования индивидуальной модели, в противном случае возникнет ошибка.
288
+ --custom_model CUSTOM_MODEL
289
+ Путь к файлу индивидуальной модели (.pth). Требуется, если используется индивидуальная модель.
290
+ --custom_config CUSTOM_CONFIG
291
+ Путь к конфигурационному файлу индивидуальной модели (config.json). Требуется, если используется индивидуальная модель.
292
+ --custom_vocab CUSTOM_VOCAB
293
+ Путь к словарю индивидуальной модели (vocab.json). Требуется, если используется индивидуальная модель.
294
+ --custom_model_url CUSTOM_MODEL_URL
295
+ URL для скачивания индивидуальной модели в виде zip-архива. Опционально, но если указано, то будет использовано.
296
+ Примеры включающие модель David Attenborough: 'https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/resolve/main/Finished_model_files.zip?download=true'. Больше точно-настроенных моделей XTTS можно найти на Hugging Face 'https://huggingface.co/drewThomasson'.
297
+ --temperature TEMPERATURE
298
+ Температура для модели. По умолчанию 0.65. Чем выше температура, тем более креативным будет синтез голоса, с большим наваждением. Чем меньше, тем более монотонным и спокойным.
299
+ --length_penalty LENGTH_PENALTY
300
+ Ограничение длинны авторегрессионного декодера. По умолчанию 1.0. Не применяется к индивидуальным моделям.
301
+ --repetition_penalty REPETITION_PENALTY
302
+ Ограниечение предотвращающее повторение авторегрессивным декодером за собой. По умолчанию 2.0
303
+ --top_k TOP_K Сэмплирование Top-k. Меньшее значение приводит к более вероятностному выводу и ускоряют генерацию аудио. По умолчанию 50.
304
+ --top_p TOP_P Сэмплирование Top-p. Меньшее значение приводит к более вероятностному выводу и ускоряют генерацию аудио. По умолчанию 0.8.
305
+ --speed SPEED Фактор скорости начитки. Чем больше значение, тем быстрее диктор будет читать текст. По умолчанию 1.0.
306
+ --enable_text_splitting ENABLE_TEXT_SPLITTING
307
+ Включает разбиение текста на предложения. По умолчанию True.
308
+
309
+ Пример: python script.py --headless --ebook path_to_ebook --voice path_to_voice --language en --use_custom_model True --custom_model model.pth --custom_config config.json --custom_vocab vocab.json
310
+ ```
311
+ </details>
312
+
313
+ #### 🖥️ Docker Web-интерфейс
314
+ ![demo_web_gui](https://github.com/user-attachments/assets/85af88a7-05dd-4a29-91de-76a14cf5ef06)
315
+
316
+ <details>
317
+ <summary>Нажмите для просмотра изображений Web-интерфейса</summary>
318
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/b36c71cf-8e06-484c-a252-934e6b1d0c2f">
319
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/c0dab57a-d2d4-4658-bff9-3842ec90cb40">
320
+ <img width="1728" alt="image" src="https://github.com/user-attachments/assets/0a99eeac-c521-4b21-8656-e064c1adc528">
321
+ </details>
322
+
323
+ ### 🛠️ Для индивидуальных Xtts моделей
324
+
325
+ Модели создаются для лучшего использования с конкретным голосом. Проверьте различные модели на страничке Hugging Face [тут](https://huggingface.co/drewThomasson).
326
+
327
+ Для использования инди��идуальных моделей, используйте ссылку на архив с моделью `Finished_model_files.zip`, например:
328
+ [David Attenborough точно настроенный голос Finished_model_files.zip](https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/resolve/main/Finished_model_files.zip?download=true)
329
+
330
+ Для индивидуальной модели также необходим файл с голосом:
331
+ [файл с голосом David Attenborough](https://huggingface.co/drewThomasson/xtts_David_Attenborough_fine_tune/blob/main/ref.wav)
332
+
333
+
334
+
335
+ Больше информации можно найти на [странице Dockerfile Hub]([https://github.com/DrewThomasson/ebook2audiobookXTTS](https://hub.docker.com/repository/docker/athomasson2/ebook2audiobookxtts/general)).
336
+
337
+ ## 🌐 Точно отстроенные модели Xtts models
338
+
339
+ Для поиска уже подготовленных точно настроенных моделей XTTS обратитесь к [этой страничке на Hugging Face](https://huggingface.co/drewThomasson) 🌐. Ищите модели которые имеют в наименовании "xtts fine tune".
340
+
341
+ ## 🎥 Демонстрация
342
+
343
+ Голос ненастного дня
344
+
345
+ https://github.com/user-attachments/assets/8486603c-38b1-43ce-9639-73757dfb1031
346
+
347
+ Голос David Attenborough
348
+
349
+ https://github.com/user-attachments/assets/47c846a7-9e51-4eb9-844a-7460402a20a8
350
+
351
+
352
+ ## 🤗 [Демонстрация в пространстве Huggingface](https://huggingface.co/spaces/drewThomasson/ebook2audiobookXTTS)
353
+ - Пространства на Huggingface работают на бесплатном уровне процессоров, поэтому выполнение очень медленное и часто возникают ошибки связанные с истечением времени. Не пытайтесь преобразовывать большие файлы.
354
+ - Лучше всего клонировать пространство или запускать его локально.
355
+
356
+ ## Бесплатный Google Colab [![Бесплатный Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DrewThomasson/ebook2audiobookXTTS/blob/main/Notebooks/colab_ebook2audiobookxtts.ipynb)
357
+
358
+
359
+
360
+ ## 📚 Поддерживаемые форматы электронных книг
361
+
362
+ - **Можно**: `.epub`, `.pdf`, `.mobi`, `.txt`, `.html`, `.rtf`, `.chm`, `.lit`, `.pdb`, `.fb2`, `.odt`, `.cbr`, `.cbz`, `.prc`, `.lrf`, `.pml`, `.snb`, `.cbc`, `.rb`, `.tcr`
363
+ - **Лучше**: `.epub` или `.mobi` для автоматического определения глав.
364
+
365
+ ## 📂 Вывод
366
+
367
+ - Создается файл с расширением `.m4b`, содержащий метаданные и главы.
368
+ - **Пример вывода**: ![Пример](https://github.com/DrewThomasson/VoxNovel/blob/dc5197dff97252fa44c391dc0596902d71278a88/readme_files/example_in_app.jpeg)
369
+
370
+ ## 🛠️ Частые проблемы:
371
+ - "Очень медленно!" - При конвертации только на CPU она происходит медленно, единственный способ ускорения - использовать GPU от NVIDIA: [Обсуждение](https://github.com/DrewThomasson/ebook2audiobookXTTS/discussions/19#discussioncomment-10879846). Для быстрой многоязыковой генерации аудио, рекомендуется использовать другой проект, [использующий piper-tts](https://github.com/DrewThomasson/ebook2audiobookpiper-tts). (Тем не менее, в нем нет функции клонирования голоса без лишней суеты, и он воспроизводит голоса в качестве Siri, но он намного быстрее работает на CPU.)
372
+ - "У меня проблема с зависимостями" - Просто используйте Docker. Образы в Docker самодостаточны, имеют, в том числе, режим работы с командной строкой, ключ для вывода помощи.
373
+ - "У меня проблема с обрезаным аудио!" - создайте запись о проблеме, автор не говорит на каждом из поддерживаемых языков, и ему требуется помощь по автоматическому разбиению текста на предложения в поддерживаемых языках.😊
374
+ - "Процесс застопорился на 30% в Web-интерфейсе!" - Отображение прогресса в Web-интерфейсе выполнено на базовом уровне и содержит всего 3 шага, для контроллирования процесса посматривайте в терминальный вывод, где и отображается обработка текущего предложения.
375
+
376
+ ## С чем требуется помощь! 🙌
377
+ ## [Полный список тут](https://github.com/DrewThomasson/ebook2audiobookXTTS/issues/32)
378
+ - Любая помощь от людей, говорящих на поддерживаемых языках для более корректного разбиения текста на предложения.
379
+ - Потенциальная помощь в создании инструкций для разных языков (автор знает только английский 😔).
380
+
381
+ ## 🙏 Отдельные спасибо
382
+
383
+ - **Coqui TTS**: [Coqui TTS GitHub](https://github.com/coqui-ai/TTS)
384
+ - **Calibre**: [Calibre Website](https://calibre-ebook.com)
385
+
386
+ - [@shakenbake15 за лучший способ сохранения глав](https://github.com/DrewThomasson/ebook2audiobookXTTS/issues/8)
387
+
legacy/v1.0/samples/Supported_language_sample__generated_outputs/ar.m4b ADDED
Binary file (456 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/cs.m4b ADDED
Binary file (400 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/de.m4b ADDED
Binary file (420 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/en.m4b ADDED
Binary file (432 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/es.m4b ADDED
Binary file (499 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/fr.m4b ADDED
Binary file (412 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/hu.m4b ADDED
Binary file (365 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/it.m4b ADDED
Binary file (503 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/ko.m4b ADDED
Binary file (440 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/nl.m4b ADDED
Binary file (411 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/pl.m4b ADDED
Binary file (413 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/pt.m4b ADDED
Binary file (477 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/ru.m4b ADDED
Binary file (412 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/tr.m4b ADDED
Binary file (356 kB). View file
 
legacy/v1.0/samples/Supported_language_sample__generated_outputs/zh-cn.m4b ADDED
Binary file (400 kB). View file
 
legacy/v1.0/samples/Supported_language_sample_texts/ar.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ في البداية كان هناك نور، وظهر العالم إلى الوجود. ارتفعت الجبال، جرت الأنهار، وازدهرت الغابات بالحياة. ومع شروق الشمس كل يوم، اكتشف الناس عجائب الأرض. بنوا المنازل، شكلوا المجتمعات، وبدأوا في تأسيس الحضارات. مع مرور الوقت، انتقلت المعرفة من جيل إلى جيل، حاملةً معها القدرة على تشكيل المستقبل. ومن خلال الانتصارات والتحديات، واصلت البشرية النمو، واستكشفت أسرار الكون الواسعة.
legacy/v1.0/samples/Supported_language_sample_texts/cs.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Na počátku bylo světlo, a svět vznikl. Hory se zvedly, řeky tekly a lesy se rozkvétaly životem. Každý den s východem slunce lidé objevovali zázraky Země. Stavěli domy, tvořili komunity a zakládali civilizace. Časem se znalosti předávaly dál a přinášely s sebou moc formovat budoucnost. Prostřednictvím triumfů a výzev lidstvo stále rostlo a zkoumalo nekonečná tajemství vesmíru.
legacy/v1.0/samples/Supported_language_sample_texts/de.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Am Anfang war Licht, und die Welt entstand. Berge erhoben sich, Flüsse flossen, und Wälder erblühten mit Leben. Als die Sonne jeden Tag aufging, entdeckten die Menschen die Wunder der Erde. Sie bauten Häuser, gründeten Gemeinschaften und begannen Zivilisationen. Mit der Zeit wurde Wissen weitergegeben, und mit ihm die Fähigkeit, die Zukunft zu gestalten. Durch Erfolge und Herausforderungen wuchs die Menschheit weiter und erforschte die weiten Geheimnisse des Universums.