import logging import os from typing import Optional from TTS.utils.download import download_kaggle_dataset, download_url, extract_archive logger = logging.getLogger(__name__) def download_ljspeech(path: str): """Download and extract LJSpeech dataset Args: path (str): path to the directory where the dataset will be stored. """ os.makedirs(path, exist_ok=True) url = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2" download_url(url, path) basename = os.path.basename(url) archive = os.path.join(path, basename) extract_archive(archive) def download_vctk(path: str, use_kaggle: Optional[bool] = False): """Download and extract VCTK dataset. Args: path (str): path to the directory where the dataset will be stored. use_kaggle (bool, optional): Downloads vctk dataset from kaggle. Is generally faster. Defaults to False. """ if use_kaggle: download_kaggle_dataset("mfekadu/english-multispeaker-corpus-for-voice-cloning", "VCTK", path) else: os.makedirs(path, exist_ok=True) url = "https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip" download_url(url, path) basename = os.path.basename(url) archive = os.path.join(path, basename) extract_archive(archive) def download_tweb(path: str): """Download and extract Tweb dataset Args: path (str): Path to the directory where the dataset will be stored. """ download_kaggle_dataset("bryanpark/the-world-english-bible-speech-dataset", "TWEB", path) def download_libri_tts(path: str, subset: Optional[str] = "all"): """Download and extract libri tts dataset. Args: path (str): Path to the directory where the dataset will be stored. subset (str, optional): Name of the subset to download. If you only want to download a certain portion specify it here. Defaults to 'all'. """ subset_dict = { "libri-tts-clean-100": "http://www.openslr.org/resources/60/train-clean-100.tar.gz", "libri-tts-clean-360": "http://www.openslr.org/resources/60/train-clean-360.tar.gz", "libri-tts-other-500": "http://www.openslr.org/resources/60/train-other-500.tar.gz", "libri-tts-dev-clean": "http://www.openslr.org/resources/60/dev-clean.tar.gz", "libri-tts-dev-other": "http://www.openslr.org/resources/60/dev-other.tar.gz", "libri-tts-test-clean": "http://www.openslr.org/resources/60/test-clean.tar.gz", "libri-tts-test-other": "http://www.openslr.org/resources/60/test-other.tar.gz", } os.makedirs(path, exist_ok=True) if subset == "all": for sub, val in subset_dict.items(): logger.info("Downloading %s...", sub) download_url(val, path) basename = os.path.basename(val) archive = os.path.join(path, basename) extract_archive(archive) logger.info("All subsets downloaded") else: url = subset_dict[subset] download_url(url, path) basename = os.path.basename(url) archive = os.path.join(path, basename) extract_archive(archive) def download_thorsten_de(path: str): """Download and extract Thorsten german male voice dataset. Args: path (str): Path to the directory where the dataset will be stored. """ os.makedirs(path, exist_ok=True) url = "https://www.openslr.org/resources/95/thorsten-de_v02.tgz" download_url(url, path) basename = os.path.basename(url) archive = os.path.join(path, basename) extract_archive(archive) def download_mailabs(path: str, language: str = "english"): """Download and extract Mailabs dataset. Args: path (str): Path to the directory where the dataset will be stored. language (str): Language subset to download. Defaults to english. """ language_dict = { "english": "https://data.solak.de/data/Training/stt_tts/en_US.tgz", "german": "https://data.solak.de/data/Training/stt_tts/de_DE.tgz", "french": "https://data.solak.de/data/Training/stt_tts/fr_FR.tgz", "italian": "https://data.solak.de/data/Training/stt_tts/it_IT.tgz", "spanish": "https://data.solak.de/data/Training/stt_tts/es_ES.tgz", } os.makedirs(path, exist_ok=True) url = language_dict[language] download_url(url, path) basename = os.path.basename(url) archive = os.path.join(path, basename) extract_archive(archive)