File size: 8,320 Bytes
c39db41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import gc
import torchaudio
import pandas
from faster_whisper import WhisperModel
from glob import glob
from tqdm import tqdm
from TTS.tts.layers.xtts.tokenizer import multilingual_cleaners
# Add support for JA train
# from utils.tokenizer import multilingual_cleaners
import torch
import torchaudio
# torch.set_num_threads(1)
torch.set_num_threads(16)
import os
audio_types = (".wav", ".mp3", ".flac")
def find_latest_best_model(folder_path):
search_path = os.path.join(folder_path, '**', 'best_model.pth')
files = glob(search_path, recursive=True)
latest_file = max(files, key=os.path.getctime, default=None)
return latest_file
def list_audios(basePath, contains=None):
# return the set of files that are valid
return list_files(basePath, validExts=audio_types, contains=contains)
def list_files(basePath, validExts=None, contains=None):
# loop over the directory structure
for (rootDir, dirNames, filenames) in os.walk(basePath):
# loop over the filenames in the current directory
for filename in filenames:
# if the contains string is not none and the filename does not contain
# the supplied string, then ignore the file
if contains is not None and filename.find(contains) == -1:
continue
# determine the file extension of the current file
ext = filename[filename.rfind("."):].lower()
# check to see if the file is an audio and should be processed
if validExts is None or ext.endswith(validExts):
# construct the path to the audio and yield it
audioPath = os.path.join(rootDir, filename)
yield audioPath
def format_audio_list(audio_files, asr_model, target_language="en", out_path=None, buffer=0.2, eval_percentage=0.15, speaker_name="coqui", gradio_progress=None):
audio_total_size = 0
os.makedirs(out_path, exist_ok=True)
lang_file_path = os.path.join(out_path, "lang.txt")
current_language = None
if os.path.exists(lang_file_path):
with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
current_language = existing_lang_file.read().strip()
if current_language != target_language:
with open(lang_file_path, 'w', encoding='utf-8') as lang_file:
lang_file.write(target_language + '\n')
print("Warning, existing language does not match target language. Updated lang.txt with target language.")
else:
print("Existing language matches target language")
metadata = {"audio_file": [], "text": [], "speaker_name": []}
train_metadata_path = os.path.join(out_path, "metadata_train.csv")
eval_metadata_path = os.path.join(out_path, "metadata_eval.csv")
existing_metadata = {'train': None, 'eval': None}
if os.path.exists(train_metadata_path):
existing_metadata['train'] = pandas.read_csv(train_metadata_path, sep="|")
print("Existing training metadata found and loaded.")
if os.path.exists(eval_metadata_path):
existing_metadata['eval'] = pandas.read_csv(eval_metadata_path, sep="|")
print("Existing evaluation metadata found and loaded.")
if gradio_progress is not None:
tqdm_object = gradio_progress.tqdm(audio_files, desc="Formatting...")
else:
tqdm_object = tqdm(audio_files)
for audio_path in tqdm_object:
audio_file_name_without_ext, _= os.path.splitext(os.path.basename(audio_path))
prefix_check = f"wavs/{audio_file_name_without_ext}_"
skip_processing = False
for key in ['train', 'eval']:
if existing_metadata[key] is not None:
mask = existing_metadata[key]['audio_file'].str.startswith(prefix_check)
if mask.any():
print(f"Segments from {audio_file_name_without_ext} have been previously processed; skipping...")
skip_processing = True
break
if skip_processing:
continue
wav, sr = torchaudio.load(audio_path)
if wav.size(0) != 1:
wav = torch.mean(wav, dim=0, keepdim=True)
wav = wav.squeeze()
audio_total_size += (wav.size(-1) / sr)
segments, _= asr_model.transcribe(audio_path, vad_filter=True, word_timestamps=True, language=target_language)
segments = list(segments)
i = 0
sentence = ""
sentence_start = None
first_word = True
words_list = []
for _, segment in enumerate(segments):
words = list(segment.words)
words_list.extend(words)
for word_idx, word in enumerate(words_list):
if first_word:
sentence_start = word.start
if word_idx == 0:
sentence_start = max(sentence_start - buffer, 0)
else:
previous_word_end = words_list[word_idx - 1].end
sentence_start = max(sentence_start - buffer, (previous_word_end + sentence_start) / 2)
sentence = word.word
first_word = False
else:
sentence += word.word
if word.word[-1] in ["!", "。", ".", "?"]:
sentence = sentence[1:]
sentence = multilingual_cleaners(sentence, target_language)
audio_file_name, _= os.path.splitext(os.path.basename(audio_path))
audio_file = f"wavs/{audio_file_name}_{str(i).zfill(8)}.wav"
if word_idx + 1 < len(words_list):
next_word_start = words_list[word_idx + 1].start
else:
next_word_start = (wav.shape[0] - 1) / sr
word_end = min((word.end + next_word_start) / 2, word.end + buffer)
absolute_path = os.path.join(out_path, audio_file)
os.makedirs(os.path.dirname(absolute_path), exist_ok=True)
i += 1
first_word = True
audio = wav[int(sr*sentence_start):int(sr *word_end)].unsqueeze(0)
if audio.size(-1) >= sr / 3:
torchaudio.save(absolute_path, audio, sr)
else:
continue
metadata["audio_file"].append(audio_file)
metadata["text"].append(sentence)
metadata["speaker_name"].append(speaker_name)
df = pandas.DataFrame(metadata)
mode = 'w' if not os.path.exists(train_metadata_path) else 'a'
header = not os.path.exists(train_metadata_path)
df.to_csv(train_metadata_path, sep="|", index=False, mode=mode, header=header)
mode = 'w' if not os.path.exists(eval_metadata_path) else 'a'
header = not os.path.exists(eval_metadata_path)
df.to_csv(eval_metadata_path, sep="|", index=False, mode=mode, header=header)
metadata = {"audio_file": [], "text": [], "speaker_name": []}
if os.path.exists(train_metadata_path) and os.path.exists(eval_metadata_path):
existing_train_df = existing_metadata['train']
existing_eval_df = existing_metadata['eval']
else:
existing_train_df = pandas.DataFrame(columns=["audio_file", "text", "speaker_name"])
existing_eval_df = pandas.DataFrame(columns=["audio_file", "text", "speaker_name"])
new_data_df = pandas.read_csv(train_metadata_path, sep="|")
combined_train_df = pandas.concat([existing_train_df, new_data_df], ignore_index=True).drop_duplicates().reset_index(drop=True)
combined_eval_df = pandas.concat([existing_eval_df, new_data_df], ignore_index=True).drop_duplicates().reset_index(drop=True)
combined_train_df_shuffled = combined_train_df.sample(frac=1)
num_val_samples = int(len(combined_train_df_shuffled)* eval_percentage)
final_eval_set = combined_train_df_shuffled[:num_val_samples]
final_training_set = combined_train_df_shuffled[num_val_samples:]
final_training_set.sort_values('audio_file').to_csv(train_metadata_path, sep='|', index=False)
final_eval_set.sort_values('audio_file').to_csv(eval_metadata_path, sep='|', index=False)
return train_metadata_path, eval_metadata_path, audio_total_size
|