File size: 8,320 Bytes
c39db41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import gc
import torchaudio
import pandas
from faster_whisper import WhisperModel
from glob import glob

from tqdm import tqdm

from TTS.tts.layers.xtts.tokenizer import multilingual_cleaners
# Add support for JA train
# from utils.tokenizer import multilingual_cleaners

import torch
import torchaudio
# torch.set_num_threads(1)


torch.set_num_threads(16)
import os

audio_types = (".wav", ".mp3", ".flac")

def find_latest_best_model(folder_path):
        search_path = os.path.join(folder_path, '**', 'best_model.pth')
        files = glob(search_path, recursive=True)
        latest_file = max(files, key=os.path.getctime, default=None)
        return latest_file


def list_audios(basePath, contains=None):
    # return the set of files that are valid
    return list_files(basePath, validExts=audio_types, contains=contains)

def list_files(basePath, validExts=None, contains=None):
    # loop over the directory structure
    for (rootDir, dirNames, filenames) in os.walk(basePath):
        # loop over the filenames in the current directory
        for filename in filenames:
            # if the contains string is not none and the filename does not contain
            # the supplied string, then ignore the file
            if contains is not None and filename.find(contains) == -1:
                continue

            # determine the file extension of the current file
            ext = filename[filename.rfind("."):].lower()

            # check to see if the file is an audio and should be processed
            if validExts is None or ext.endswith(validExts):
                # construct the path to the audio and yield it
                audioPath = os.path.join(rootDir, filename)
                yield audioPath

def format_audio_list(audio_files, asr_model, target_language="en", out_path=None, buffer=0.2, eval_percentage=0.15, speaker_name="coqui", gradio_progress=None):
    audio_total_size = 0
    os.makedirs(out_path, exist_ok=True)

    lang_file_path = os.path.join(out_path, "lang.txt")
    current_language = None
    if os.path.exists(lang_file_path):
        with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
            current_language = existing_lang_file.read().strip()

    if current_language != target_language:
        with open(lang_file_path, 'w', encoding='utf-8') as lang_file:
            lang_file.write(target_language + '\n')
        print("Warning, existing language does not match target language. Updated lang.txt with target language.")
    else:
        print("Existing language matches target language")

    metadata = {"audio_file": [], "text": [], "speaker_name": []}
    train_metadata_path = os.path.join(out_path, "metadata_train.csv")
    eval_metadata_path = os.path.join(out_path, "metadata_eval.csv")

    existing_metadata = {'train': None, 'eval': None}
    if os.path.exists(train_metadata_path):
        existing_metadata['train'] = pandas.read_csv(train_metadata_path, sep="|")
        print("Existing training metadata found and loaded.")

    if os.path.exists(eval_metadata_path):
        existing_metadata['eval'] = pandas.read_csv(eval_metadata_path, sep="|")
        print("Existing evaluation metadata found and loaded.")

    if gradio_progress is not None:
        tqdm_object = gradio_progress.tqdm(audio_files, desc="Formatting...")
    else:
        tqdm_object = tqdm(audio_files)

    for audio_path in tqdm_object:
        audio_file_name_without_ext, _= os.path.splitext(os.path.basename(audio_path))
        prefix_check = f"wavs/{audio_file_name_without_ext}_"

        skip_processing = False
        for key in ['train', 'eval']:
            if existing_metadata[key] is not None:
                mask = existing_metadata[key]['audio_file'].str.startswith(prefix_check)
                if mask.any():
                    print(f"Segments from {audio_file_name_without_ext} have been previously processed; skipping...")
                    skip_processing = True
                    break

        if skip_processing:
            continue

        wav, sr = torchaudio.load(audio_path)
        if wav.size(0) != 1:
            wav = torch.mean(wav, dim=0, keepdim=True)

        wav = wav.squeeze()
        audio_total_size += (wav.size(-1) / sr)

        segments, _= asr_model.transcribe(audio_path, vad_filter=True, word_timestamps=True, language=target_language)
        segments = list(segments)
        i = 0
        sentence = ""
        sentence_start = None
        first_word = True
        words_list = []
        for _, segment in enumerate(segments):
            words = list(segment.words)
            words_list.extend(words)

        for word_idx, word in enumerate(words_list):
            if first_word:
                sentence_start = word.start
                if word_idx == 0:
                    sentence_start = max(sentence_start - buffer, 0)
                else:
                    previous_word_end = words_list[word_idx - 1].end
                    sentence_start = max(sentence_start - buffer, (previous_word_end + sentence_start) / 2)

                sentence = word.word
                first_word = False
            else:
                sentence += word.word

            if word.word[-1] in ["!", "。", ".", "?"]:
                sentence = sentence[1:]
                sentence = multilingual_cleaners(sentence, target_language)
                audio_file_name, _= os.path.splitext(os.path.basename(audio_path))
                audio_file = f"wavs/{audio_file_name}_{str(i).zfill(8)}.wav"

                if word_idx + 1 < len(words_list):
                    next_word_start = words_list[word_idx + 1].start
                else:
                    next_word_start = (wav.shape[0] - 1) / sr

                word_end = min((word.end + next_word_start) / 2, word.end + buffer)

                absolute_path = os.path.join(out_path, audio_file)
                os.makedirs(os.path.dirname(absolute_path), exist_ok=True)
                i += 1
                first_word = True

                audio = wav[int(sr*sentence_start):int(sr *word_end)].unsqueeze(0)
                if audio.size(-1) >= sr / 3:
                    torchaudio.save(absolute_path, audio, sr)
                else:
                    continue

                metadata["audio_file"].append(audio_file)
                metadata["text"].append(sentence)
                metadata["speaker_name"].append(speaker_name)

                df = pandas.DataFrame(metadata)

                mode = 'w' if not os.path.exists(train_metadata_path) else 'a'
                header = not os.path.exists(train_metadata_path)
                df.to_csv(train_metadata_path, sep="|", index=False, mode=mode, header=header)

                mode = 'w' if not os.path.exists(eval_metadata_path) else 'a'
                header = not os.path.exists(eval_metadata_path)
                df.to_csv(eval_metadata_path, sep="|", index=False, mode=mode, header=header)

                metadata = {"audio_file": [], "text": [], "speaker_name": []}

    if os.path.exists(train_metadata_path) and os.path.exists(eval_metadata_path):
        existing_train_df = existing_metadata['train']
        existing_eval_df = existing_metadata['eval']
    else:
        existing_train_df = pandas.DataFrame(columns=["audio_file", "text", "speaker_name"])
        existing_eval_df = pandas.DataFrame(columns=["audio_file", "text", "speaker_name"])

    new_data_df = pandas.read_csv(train_metadata_path, sep="|")

    combined_train_df = pandas.concat([existing_train_df, new_data_df], ignore_index=True).drop_duplicates().reset_index(drop=True)
    combined_eval_df = pandas.concat([existing_eval_df, new_data_df], ignore_index=True).drop_duplicates().reset_index(drop=True)

    combined_train_df_shuffled = combined_train_df.sample(frac=1)
    num_val_samples = int(len(combined_train_df_shuffled)* eval_percentage)

    final_eval_set = combined_train_df_shuffled[:num_val_samples]
    final_training_set = combined_train_df_shuffled[num_val_samples:]

    final_training_set.sort_values('audio_file').to_csv(train_metadata_path, sep='|', index=False)
    final_eval_set.sort_values('audio_file').to_csv(eval_metadata_path, sep='|', index=False)

    return train_metadata_path, eval_metadata_path, audio_total_size