Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import transformers | |
# https://github.com/huggingface/peft | |
# Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) | |
# to various downstream applications without fine-tuning all the model's parameters. | |
from peft import PeftModel | |
from scrape_website import process_webpage | |
assert ( | |
"LlamaTokenizer" in transformers._import_structure["models.llama"] | |
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" | |
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig | |
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") | |
BASE_MODEL = "decapoda-research/llama-7b-hf" | |
LORA_WEIGHTS = "tloen/alpaca-lora-7b" | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
try: | |
# mps device enables high-performance training on GPU for MacOS devices with Metal programming framework. | |
if torch.backends.mps.is_available(): | |
device = "mps" | |
except: | |
pass | |
if device == "cuda": | |
model = LlamaForCausalLM.from_pretrained( | |
BASE_MODEL, | |
load_in_8bit=False, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
model = PeftModel.from_pretrained( | |
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True | |
) | |
elif device == "mps": | |
model = LlamaForCausalLM.from_pretrained( | |
BASE_MODEL, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
LORA_WEIGHTS, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
else: | |
model = LlamaForCausalLM.from_pretrained( | |
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
LORA_WEIGHTS, | |
device_map={"": device}, | |
) | |
def generate_prompt(instruction, input=None): | |
if input: | |
return f"""Below is an url that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Input: | |
{input} | |
### Response:""" | |
else: | |
return f"""Below is an url that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Response:""" | |
if device != "cpu": | |
model.half() | |
model.eval() | |
if torch.__version__ >= "2": | |
model = torch.compile(model) | |
def evaluate( | |
instruction, | |
url, | |
temperature=0.1, | |
top_p=0.75, | |
top_k=40, | |
num_beams=4, | |
max_new_tokens=128, | |
**kwargs, | |
): | |
content = process_webpage(url=url) | |
# avoid GPU memory overflow | |
with torch.no_grad(): | |
torch.cuda.empty_cache() | |
prompt = generate_prompt(instruction, content) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"].to(device) | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
num_beams=num_beams, | |
**kwargs, | |
) | |
generation_output = model.generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=max_new_tokens, | |
) | |
s = generation_output.sequences[0] | |
output = tokenizer.decode(s) | |
# avoid GPU memory overflow | |
torch.cuda.empty_cache() | |
return output.split("### Response:")[1].strip() | |
g = gr.Interface( | |
fn=evaluate, | |
inputs=[ | |
gr.components.Textbox( | |
lines=2, label="FAQ", placeholder="Ask me anything about this website?" | |
), | |
gr.components.Textbox( | |
lines=1, label="Website URL", placeholder="https://www.meet-drift.ai/" | |
), | |
# gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), | |
# gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), | |
# gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), | |
# gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), | |
# gr.components.Slider( | |
# minimum=1, maximum=512, step=1, value=128, label="Max tokens" | |
# ), | |
], | |
outputs=[ | |
gr.inputs.Textbox( | |
lines=5, | |
label="Output", | |
) | |
], | |
title="FAQ A Website", | |
examples=[ | |
[ | |
"Can you list the capabilities this company has in bullet points?", | |
"https://www.meet-drift.ai/", | |
], | |
["What's the name of the founder?", "https://www.meet-drift.ai/about"], | |
[ | |
"in 1 word what's the service the company is providing?", | |
"https://www.meet-drift.ai/", | |
], | |
[ | |
"in 1 word what's the service the company is providing?", | |
"https://www.tribe.ai/about", | |
], | |
["Who is Noah Gale?", "https://www.tribe.ai/team"], | |
["What sector is Tribe active in?", "https://www.tribe.ai"], | |
] | |
# description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).", | |
) | |
g.queue(concurrency_count=1) | |
g.launch() | |