Vincent Claes commited on
Commit
ea3924a
·
2 Parent(s): d2f51cb 3163ec5

improve format of the app

Browse files
Files changed (4) hide show
  1. app.py +64 -45
  2. intro.py +1 -0
  3. recruiting_assistant.py +62 -23
  4. scripts/process-data.py +8 -8
app.py CHANGED
@@ -235,52 +235,71 @@ with demo:
235
  </div>
236
  """
237
  )
238
- gr.Markdown(
239
- """
 
 
 
 
240
 
241
- ## 1. Provide a vacancy and get back relevant resumes from an entire database of resumes for various roles.
242
- """
243
- )
244
- text_vacancy = gr.Textbox(
245
- hint="Paste here a Vacancy...", lines=7, label="Copy/paste here a vacancy"
246
- )
247
- b1 = gr.Button("Search Resume")
248
- text_search_result = gr.Textbox(
249
- hint="Top resumes will appear here ...",
250
- label="Top resumes found in the database",
251
- )
252
- b1.click(search_resume, inputs=text_vacancy, outputs=text_search_result)
253
- gr.Markdown(
254
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255
 
256
- ## 2. Select an appropriate resume for this vacancy, paste it in the textfield and get a relevant introduction email.
257
- """
258
- )
259
- text_resume = gr.Textbox(
260
- hint="Paste here a Resume...",
261
- label="Copy / Paste here your prefered resume from above and click the button to write an intro ",
262
- )
263
- b2 = gr.Button("Write a relevant intro")
264
- gr.Markdown(
265
- """
266
-
267
- ## 3. You have a relevant introduction email to send to the customer.
268
- """
269
- )
270
- text_intro = gr.Textbox(label="Intro Email")
271
- evaluation = gr.Textbox(label="Evaluation of the skills")
272
- b2.click(
273
- recruiting_assistant.create_intro,
274
- inputs=[text_vacancy, text_resume],
275
- outputs=[text_intro, evaluation],
276
- )
277
-
278
- gr.Examples(
279
- examples=examples,
280
- fn=search_resume,
281
- inputs=text_vacancy,
282
- outputs=text_search_result,
283
- cache_examples=False,
284
- )
285
 
286
  demo.launch()
 
235
  </div>
236
  """
237
  )
238
+ with gr.Group():
239
+ with gr.Box():
240
+ with gr.Row(elem_id="prompt-container").style(
241
+ mobile_collapse=False, equal_height=True
242
+ ):
243
+ with gr.Column():
244
 
245
+ gr.Markdown(
246
+ """
247
+
248
+ ## 1. Provide a vacancy and get back relevant resumes from an entire database of resumes for various roles.
249
+ """
250
+ )
251
+ text_vacancy = gr.Textbox(
252
+ hint="Paste here a Vacancy...",
253
+ lines=7,
254
+ label="Copy/paste here a vacancy",
255
+ )
256
+ b1 = gr.Button("Search Resume").style(
257
+ margin=False,
258
+ rounded=(False, True, True, False),
259
+ full_width=False,
260
+ )
261
+ text_search_result = gr.Textbox(
262
+ hint="Top resumes will appear here ...",
263
+ label="Top resumes found in the database",
264
+ )
265
+ b1.click(
266
+ search_resume, inputs=text_vacancy, outputs=text_search_result
267
+ )
268
+ gr.Markdown(
269
+ """
270
+
271
+ ## 2. Select an appropriate resume for this vacancy, paste it in the textfield and get a relevant introduction email.
272
+ """
273
+ )
274
+ text_resume = gr.Textbox(
275
+ hint="Paste here a Resume...",
276
+ label="Copy / Paste here your prefered resume from above and click the button to write an intro ",
277
+ )
278
+ b2 = gr.Button("Write a relevant intro").style(
279
+ margin=False,
280
+ rounded=(False, True, True, False),
281
+ full_width=False,
282
+ )
283
+ gr.Markdown(
284
+ """
285
+
286
+ ## 3. You have a relevant introduction email to send to the customer.
287
+ """
288
+ )
289
+ text_intro = gr.Textbox(label="Intro Email")
290
+ evaluation = gr.Textbox(label="Evaluation of the skills")
291
+ b2.click(
292
+ recruiting_assistant.create_intro,
293
+ inputs=[text_vacancy, text_resume],
294
+ outputs=[text_intro, evaluation],
295
+ )
296
 
297
+ gr.Examples(
298
+ examples=examples,
299
+ fn=search_resume,
300
+ inputs=text_vacancy,
301
+ outputs=text_search_result,
302
+ cache_examples=False,
303
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304
 
305
  demo.launch()
intro.py CHANGED
@@ -35,6 +35,7 @@ def call_openai(model, prompt):
35
  print("Got a language_response!")
36
  return result
37
 
 
38
  vacancy = """
39
  DATA SCIENTIST - GENTIS
40
  ========================
 
35
  print("Got a language_response!")
36
  return result
37
 
38
+
39
  vacancy = """
40
  DATA SCIENTIST - GENTIS
41
  ========================
recruiting_assistant.py CHANGED
@@ -81,8 +81,12 @@ def create_intro(vacancy=vacancy, resume=resume):
81
  ```
82
  """
83
 
84
- prompt_vacancy_get_skills = ChatPromptTemplate.from_template(template=template_vacancy_get_skills)
85
- vacancy_skills = LLMChain(llm=llm, prompt=prompt_vacancy_get_skills, output_key="vacancy_skills")
 
 
 
 
86
 
87
  template_resume_check_skills = """
88
  ```
@@ -101,8 +105,12 @@ def create_intro(vacancy=vacancy, resume=resume):
101
  ```
102
  """
103
 
104
- prompt_resume_check_skills = ChatPromptTemplate.from_template(template=template_resume_check_skills)
105
- resume_skills = LLMChain(llm=llm, prompt=prompt_resume_check_skills, output_key="resume_skills")
 
 
 
 
106
 
107
  template_resume_past_experiences = """
108
  Can you generate me a list of the past work experiences that the candidate has based on the resume below enclosed by three backticks.
@@ -113,8 +121,12 @@ def create_intro(vacancy=vacancy, resume=resume):
113
  ```
114
  """
115
 
116
- prompt_resume_past_experiences = ChatPromptTemplate.from_template(template=template_resume_past_experiences)
117
- past_experiences = LLMChain(llm=llm, prompt=prompt_resume_past_experiences, output_key="past_experiences")
 
 
 
 
118
 
119
  template_vacancy_check_past_experiences = """
120
  ```
@@ -133,8 +145,14 @@ def create_intro(vacancy=vacancy, resume=resume):
133
  ```
134
  """
135
 
136
- prompt_vacancy_check_past_experiences = ChatPromptTemplate.from_template(template=template_vacancy_check_past_experiences)
137
- check_past_experiences = LLMChain(llm=llm, prompt=prompt_vacancy_check_past_experiences, output_key="check_past_experiences")
 
 
 
 
 
 
138
 
139
  template_introduction_email = """
140
  You are a recruitment specialist that tries to place the right profiles for the right job.
@@ -159,31 +177,51 @@ def create_intro(vacancy=vacancy, resume=resume):
159
  Skills: print here a comma seperated list of the "skills_present" key of the JSON object {resume_skills}
160
  """
161
 
162
- prompt_introduction_email = ChatPromptTemplate.from_template(template=template_introduction_email)
163
- introduction_email = LLMChain(llm=llm, prompt=prompt_introduction_email, output_key="introduction_email")
 
 
 
 
164
 
165
  match_resume_vacancy_skills_chain = SequentialChain(
166
- chains=[vacancy_skills, resume_skills, past_experiences, check_past_experiences, introduction_email],
 
 
 
 
 
 
167
  input_variables=["vacancy", "resume"],
168
- output_variables=["vacancy_skills", "resume_skills", "past_experiences", "check_past_experiences", "introduction_email"],
169
- verbose=False
 
 
 
 
 
 
170
  )
171
 
172
  result = match_resume_vacancy_skills_chain({"vacancy": vacancy, "resume": resume})
173
  print(result)
174
 
175
- resume_skills = json.loads(result['resume_skills'])
176
  relevant_skills = len(resume_skills["skills_present"])
177
- total_skills = len(resume_skills["skills_present"] + resume_skills["skills_not_present"])
178
- score_skills = round(100.0*(relevant_skills/total_skills),2)
179
-
 
180
 
181
- check_past_experiences = json.loads(result['check_past_experiences'])
182
  relevant_experiences = len(check_past_experiences["relevant_experiences"])
183
- total_experiences = len(check_past_experiences["relevant_experiences"] + check_past_experiences["irrelevant_experiences"])
184
- score_experiences = round(100.0*(relevant_experiences/total_experiences),2)
 
 
 
185
 
186
- new_line = '\n'
187
 
188
  score = f"""
189
  Skills (Score: {score_skills}%)
@@ -192,5 +230,6 @@ def create_intro(vacancy=vacancy, resume=resume):
192
  """
193
  return result["introduction_email"], score
194
 
195
- if __name__ == '__main__':
196
- create_intro(vacancy=vacancy,resume=resume)
 
 
81
  ```
82
  """
83
 
84
+ prompt_vacancy_get_skills = ChatPromptTemplate.from_template(
85
+ template=template_vacancy_get_skills
86
+ )
87
+ vacancy_skills = LLMChain(
88
+ llm=llm, prompt=prompt_vacancy_get_skills, output_key="vacancy_skills"
89
+ )
90
 
91
  template_resume_check_skills = """
92
  ```
 
105
  ```
106
  """
107
 
108
+ prompt_resume_check_skills = ChatPromptTemplate.from_template(
109
+ template=template_resume_check_skills
110
+ )
111
+ resume_skills = LLMChain(
112
+ llm=llm, prompt=prompt_resume_check_skills, output_key="resume_skills"
113
+ )
114
 
115
  template_resume_past_experiences = """
116
  Can you generate me a list of the past work experiences that the candidate has based on the resume below enclosed by three backticks.
 
121
  ```
122
  """
123
 
124
+ prompt_resume_past_experiences = ChatPromptTemplate.from_template(
125
+ template=template_resume_past_experiences
126
+ )
127
+ past_experiences = LLMChain(
128
+ llm=llm, prompt=prompt_resume_past_experiences, output_key="past_experiences"
129
+ )
130
 
131
  template_vacancy_check_past_experiences = """
132
  ```
 
145
  ```
146
  """
147
 
148
+ prompt_vacancy_check_past_experiences = ChatPromptTemplate.from_template(
149
+ template=template_vacancy_check_past_experiences
150
+ )
151
+ check_past_experiences = LLMChain(
152
+ llm=llm,
153
+ prompt=prompt_vacancy_check_past_experiences,
154
+ output_key="check_past_experiences",
155
+ )
156
 
157
  template_introduction_email = """
158
  You are a recruitment specialist that tries to place the right profiles for the right job.
 
177
  Skills: print here a comma seperated list of the "skills_present" key of the JSON object {resume_skills}
178
  """
179
 
180
+ prompt_introduction_email = ChatPromptTemplate.from_template(
181
+ template=template_introduction_email
182
+ )
183
+ introduction_email = LLMChain(
184
+ llm=llm, prompt=prompt_introduction_email, output_key="introduction_email"
185
+ )
186
 
187
  match_resume_vacancy_skills_chain = SequentialChain(
188
+ chains=[
189
+ vacancy_skills,
190
+ resume_skills,
191
+ past_experiences,
192
+ check_past_experiences,
193
+ introduction_email,
194
+ ],
195
  input_variables=["vacancy", "resume"],
196
+ output_variables=[
197
+ "vacancy_skills",
198
+ "resume_skills",
199
+ "past_experiences",
200
+ "check_past_experiences",
201
+ "introduction_email",
202
+ ],
203
+ verbose=False,
204
  )
205
 
206
  result = match_resume_vacancy_skills_chain({"vacancy": vacancy, "resume": resume})
207
  print(result)
208
 
209
+ resume_skills = json.loads(result["resume_skills"])
210
  relevant_skills = len(resume_skills["skills_present"])
211
+ total_skills = len(
212
+ resume_skills["skills_present"] + resume_skills["skills_not_present"]
213
+ )
214
+ score_skills = round(100.0 * (relevant_skills / total_skills), 2)
215
 
216
+ check_past_experiences = json.loads(result["check_past_experiences"])
217
  relevant_experiences = len(check_past_experiences["relevant_experiences"])
218
+ total_experiences = len(
219
+ check_past_experiences["relevant_experiences"]
220
+ + check_past_experiences["irrelevant_experiences"]
221
+ )
222
+ score_experiences = round(100.0 * (relevant_experiences / total_experiences), 2)
223
 
224
+ new_line = "\n"
225
 
226
  score = f"""
227
  Skills (Score: {score_skills}%)
 
230
  """
231
  return result["introduction_email"], score
232
 
233
+
234
+ if __name__ == "__main__":
235
+ create_intro(vacancy=vacancy, resume=resume)
scripts/process-data.py CHANGED
@@ -5,10 +5,10 @@
5
  import pandas as pd
6
 
7
  # Step 1: Read the parquet file
8
- df = pd.read_parquet('/Users/vincent/Downloads/csv-train.parquet')
9
 
10
- if 'Category' in df.columns:
11
- unique_classes = df['Category'].unique()
12
  print("Unique classes in 'Category' column:")
13
  for cls in unique_classes:
14
  print(cls)
@@ -16,18 +16,18 @@ else:
16
  print("'Category' column does not exist in the data.")
17
 
18
  # Step 2: Check if 'Resume' column exists
19
- if 'Resume' in df.columns:
20
  # Keep only the 'Resume' column
21
  print(df.shape)
22
- df = df.drop_duplicates(subset=['Resume'])
23
  print(df.shape)
24
- df = df[['Resume']]
25
  # Remove all the new lines from each cell of the 'Resume' column
26
- df['Resume'] = df['Resume'].replace('\n',' ', regex=True)
27
  else:
28
  print("'Resume' column does not exist in the data.")
29
 
30
  # Step 3: Write the filtered dataframe back to a csv file
31
- df.to_csv('/Users/vincent/Downloads/output.csv', index=False, header=False)
32
 
33
  print("Completed successfully")
 
5
  import pandas as pd
6
 
7
  # Step 1: Read the parquet file
8
+ df = pd.read_parquet("/Users/vincent/Downloads/csv-train.parquet")
9
 
10
+ if "Category" in df.columns:
11
+ unique_classes = df["Category"].unique()
12
  print("Unique classes in 'Category' column:")
13
  for cls in unique_classes:
14
  print(cls)
 
16
  print("'Category' column does not exist in the data.")
17
 
18
  # Step 2: Check if 'Resume' column exists
19
+ if "Resume" in df.columns:
20
  # Keep only the 'Resume' column
21
  print(df.shape)
22
+ df = df.drop_duplicates(subset=["Resume"])
23
  print(df.shape)
24
+ df = df[["Resume"]]
25
  # Remove all the new lines from each cell of the 'Resume' column
26
+ df["Resume"] = df["Resume"].replace("\n", " ", regex=True)
27
  else:
28
  print("'Resume' column does not exist in the data.")
29
 
30
  # Step 3: Write the filtered dataframe back to a csv file
31
+ df.to_csv("/Users/vincent/Downloads/output.csv", index=False, header=False)
32
 
33
  print("Completed successfully")