from langchain_core.prompts import PromptTemplate import os from langchain_community.embeddings import HuggingFaceBgeEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.llms.ctransformers import CTransformers from langchain.chains.retrieval_qa.base import RetrievalQA import streamlit as st import fitz # PyMuPDF from PIL import Image import io DB_FAISS_PATH = 'vectorstores/' #pdf_path = 'data/Harrisons_Internal_Medicine_2022,_21th_Edition_Vol_1_&_Vol_2_.pdf' custom_prompt_template = '''use the following pieces of information to answer the user's questions. If you don't know the answer, please just say that don't know the answer, don't try to make up an answer. Context : {context} Question : {question} only return the helpful answer below and nothing else. ''' def set_custom_prompt(): """ Prompt template for QA retrieval for vector stores """ prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question']) return prompt def load_llm(): llm = CTransformers( #model='epfl-llm/meditron-7b', model = 'TheBloke/Llama-2-7B-Chat-GGML', model_type='llama', max_new_token=512, temperature=0.5 ) return llm # def load_embeddings(): # embeddings = HuggingFaceBgeEmbeddings(model_name='NeuML/pubmedbert-base-embeddings', # model_kwargs={'device': 'cpu'}) # return embeddings # def load_faiss_index(embeddings): # db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True) # return db def retrieval_qa_chain(llm, prompt, db): qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type='stuff', retriever=db.as_retriever(search_kwargs={'k': 2}), return_source_documents=True, chain_type_kwargs={'prompt': prompt} ) return qa_chain def qa_bot(): embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2', model_kwargs = {'device':'cpu'}) db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True) llm = load_llm() qa_prompt = set_custom_prompt() qa = retrieval_qa_chain(llm, qa_prompt, db) return qa def final_result(query): qa_result = qa_bot() response = qa_result({'query': query}) return response def get_pdf_page_as_image(pdf_path, page_number): document = fitz.open(pdf_path) page = document.load_page(page_number) pix = page.get_pixmap() img = Image.open(io.BytesIO(pix.tobytes())) return img # # Initialize the bot # bot = qa_bot() # Streamlit webpage title st.title('Medical Chatbot') # User input user_query = st.text_input("Please enter your question:") # Button to get answer if st.button('Get Answer'): if user_query: # Call the function from your chatbot script response = final_result(user_query) if response: # Displaying the response st.write("### Answer") st.write(response['result']) # Displaying source document details if available if 'source_documents' in response: st.write("### Source Document Information") for doc in response['source_documents']: # Retrieve and format page content by replacing '\n' with new line formatted_content = doc.page_content.replace("\\n", "\n") st.write("#### Document Content") st.text_area(label="Page Content", value=formatted_content, height=300) # Retrieve source and page from metadata source = doc.metadata['source'] page = doc.metadata['page'] st.write(f"Source: {source}") st.write(f"Page Number: {page+1}") # Display the PDF page as an image # pdf_page_image = get_pdf_page_as_image(pdf_path, page) # st.image(pdf_page_image, caption=f"Page {page+1} from {source}") else: st.write("Sorry, I couldn't find an answer to your question.") else: st.write("Please enter a question to get an answer.")